Thermo-fluidic characteristics of contact melting mechanism for water-phase change material mixture: A numerical optimization

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-09-20 DOI:10.1016/j.ijheatfluidflow.2024.109561
Xinyu Huang , Ze Li , Yuan Xie , Jiayi Gao , Xiaohu Yang , Ming-Jia Li
{"title":"Thermo-fluidic characteristics of contact melting mechanism for water-phase change material mixture: A numerical optimization","authors":"Xinyu Huang ,&nbsp;Ze Li ,&nbsp;Yuan Xie ,&nbsp;Jiayi Gao ,&nbsp;Xiaohu Yang ,&nbsp;Ming-Jia Li","doi":"10.1016/j.ijheatfluidflow.2024.109561","DOIUrl":null,"url":null,"abstract":"<div><p>The paper introduces a novel composite heat transfer structure integrating sensible heat and latent heat utilizing water and phase change material, facilitated by a high thermal conductivity contact melting process. A numerical model is developed and validated. Optimization of the trapezoidal structure for the refractory zone during PCM melting ensures the volume proportion of water and PCM remains unchanged. The study compares and analyzes the melting properties of different structures (melting time, heat charging rate, energy storage rate of different media, dimensionless temperature response, etc.), and explores the impact of heat source temperature and initial temperature conditions. The findings indicate that adding water enhances the thermal conductivity and convective effect of upper PCM, however, at the end of melting, the square structure exhibits a refractory zone. It is worth noting that compared with the square initial structure Case 0, the positive trapezoid structure (Case 3) reduces the heat storage time of PCM by 6.14 % and increases the average heat storage rate of PCM and water by 5.81 % and 4.62 %, respectively, while the inverted trapezoid structure weakens the heat transfer process. Additionally, an increase in heat source temperature from 340.15 K to 354.15 K leads to a 67.10 % rise in the mean heat transfer rate of PCM and 101.75 % for water. Conversely, augmenting the initial temperature negatively affects the heat transfer rate and total heat storage of water, while reducing the melting time. This study holds significance for the development of new contact melting methods and enhancing heat transfer mechanisms.</p></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"110 ","pages":"Article 109561"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24002868","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The paper introduces a novel composite heat transfer structure integrating sensible heat and latent heat utilizing water and phase change material, facilitated by a high thermal conductivity contact melting process. A numerical model is developed and validated. Optimization of the trapezoidal structure for the refractory zone during PCM melting ensures the volume proportion of water and PCM remains unchanged. The study compares and analyzes the melting properties of different structures (melting time, heat charging rate, energy storage rate of different media, dimensionless temperature response, etc.), and explores the impact of heat source temperature and initial temperature conditions. The findings indicate that adding water enhances the thermal conductivity and convective effect of upper PCM, however, at the end of melting, the square structure exhibits a refractory zone. It is worth noting that compared with the square initial structure Case 0, the positive trapezoid structure (Case 3) reduces the heat storage time of PCM by 6.14 % and increases the average heat storage rate of PCM and water by 5.81 % and 4.62 %, respectively, while the inverted trapezoid structure weakens the heat transfer process. Additionally, an increase in heat source temperature from 340.15 K to 354.15 K leads to a 67.10 % rise in the mean heat transfer rate of PCM and 101.75 % for water. Conversely, augmenting the initial temperature negatively affects the heat transfer rate and total heat storage of water, while reducing the melting time. This study holds significance for the development of new contact melting methods and enhancing heat transfer mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水-相变材料混合物接触熔化机制的热流体特性:数值优化
本文介绍了一种新型复合传热结构,它利用水和相变材料,通过高导热接触熔化工艺,将显热和潜热融为一体。建立并验证了一个数值模型。在 PCM 熔化过程中,对耐火材料区的梯形结构进行了优化,确保水和 PCM 的体积比例保持不变。研究对比分析了不同结构的熔化特性(熔化时间、充热率、不同介质的储能率、无量纲温度响应等),并探讨了热源温度和初始温度条件的影响。研究结果表明,加水增强了上层 PCM 的导热性和对流效应,但在熔化结束时,方形结构出现了耐火区。值得注意的是,与方形初始结构(情况 0)相比,正梯形结构(情况 3)将 PCM 的蓄热时间缩短了 6.14%,将 PCM 和水的平均蓄热率分别提高了 5.81% 和 4.62%,而倒梯形结构则削弱了传热过程。此外,将热源温度从 340.15 K 提高到 354.15 K 可使 PCM 的平均传热率提高 67.10%,水的平均传热率提高 101.75%。相反,提高初始温度会对水的传热率和总蓄热量产生负面影响,同时缩短熔化时间。这项研究对开发新的接触熔化方法和增强传热机制具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
A MOPSO-based design optimization on molten salt steam generator forced circulation system under off-design conditions Pore-scale lattice Boltzmann model for heat and mass transfers in frozen soil Detached eddy simulation of large scale wind turbine wake in offshore environment Direct numerical simulation of turbulent heat transfer in a channel with circular-arc ribs mounted on one wall Optimizing Trombe Wall performances: The impact of L-shaped fins on solar heating efficiency and building thermal comfort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1