Effect of temperature and loading mode on flexural properties and failure mechanisms of fine weave punctured C/C composites over 2000 °C

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Communications Pub Date : 2024-09-19 DOI:10.1016/j.coco.2024.102088
Tianlei Yao , Diansen Li , Hongmei Zuo , Xiaolong Jia , Lei Jiang
{"title":"Effect of temperature and loading mode on flexural properties and failure mechanisms of fine weave punctured C/C composites over 2000 °C","authors":"Tianlei Yao ,&nbsp;Diansen Li ,&nbsp;Hongmei Zuo ,&nbsp;Xiaolong Jia ,&nbsp;Lei Jiang","doi":"10.1016/j.coco.2024.102088","DOIUrl":null,"url":null,"abstract":"<div><p>Fine weave punctured C/C composites are extensively utilized in aerospace applications owing to their superior mechanical properties. The effects of temperature over 2000 °C and loading mode on the flexural properties and failure mechanism were reported. It was found that the load-displacement curves of Y-direction flexure showed linear characteristics, but those of Z-direction flexure showed nonlinear characteristics because of interlayer failure. The flexural performances in the Z-direction were significantly higher than in the Y-direction. Both Y- and Z-directions flexural strengths increased dramatically, but flexural moduli initially climbed and subsequently declined with increasing temperature. In contrast with room temperature, the Y- and Z-direction flexural strengths increased by 55.6 % and 188.5 % at 2000 °C, while their corresponding flexural moduli increased by 14.3 % and 40.4 % at 1200 °C. Flexural failure in the Y direction was primarily distributed along the rows of Z-yarns. Due to narrower slits and tighter composite connections, failure gradually spreads over the Z-yarns at higher temperatures. While, the failure cracks of Z-direction flexural specimens were mainly distributed in the interlayer. As the temperature rose, the carbon fiber monofilaments of the pulled Z-direction yarns became harder linked, with neater breaks.</p></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"51 ","pages":"Article 102088"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924002791","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Fine weave punctured C/C composites are extensively utilized in aerospace applications owing to their superior mechanical properties. The effects of temperature over 2000 °C and loading mode on the flexural properties and failure mechanism were reported. It was found that the load-displacement curves of Y-direction flexure showed linear characteristics, but those of Z-direction flexure showed nonlinear characteristics because of interlayer failure. The flexural performances in the Z-direction were significantly higher than in the Y-direction. Both Y- and Z-directions flexural strengths increased dramatically, but flexural moduli initially climbed and subsequently declined with increasing temperature. In contrast with room temperature, the Y- and Z-direction flexural strengths increased by 55.6 % and 188.5 % at 2000 °C, while their corresponding flexural moduli increased by 14.3 % and 40.4 % at 1200 °C. Flexural failure in the Y direction was primarily distributed along the rows of Z-yarns. Due to narrower slits and tighter composite connections, failure gradually spreads over the Z-yarns at higher temperatures. While, the failure cracks of Z-direction flexural specimens were mainly distributed in the interlayer. As the temperature rose, the carbon fiber monofilaments of the pulled Z-direction yarns became harder linked, with neater breaks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度和加载模式对 2000 °C 以上细织穿刺 C/C 复合材料弯曲性能和破坏机理的影响
细织穿刺 C/C 复合材料因其卓越的机械性能而被广泛应用于航空航天领域。报告了温度超过 2000 °C 和加载模式对弯曲性能和破坏机理的影响。研究发现,Y 方向挠曲的载荷-位移曲线呈现线性特征,但 Z 方向挠曲的载荷-位移曲线由于层间破坏而呈现非线性特征。Z 方向的弯曲性能明显高于 Y 方向。随着温度的升高,Y 向和 Z 向的抗弯强度都急剧增加,但抗弯模量却先上升后下降。与室温相比,在 2000 ℃ 时,Y 方向和 Z 方向的抗折强度分别增加了 55.6 % 和 188.5 %,而在 1200 ℃ 时,其相应的抗折模量分别增加了 14.3 % 和 40.4 %。Y 方向上的挠曲破坏主要沿 Z 纱列分布。由于缝隙更窄,复合材料连接更紧密,因此在温度升高时,破坏会逐渐蔓延到 Z-纱线上。而 Z 向弯曲试样的破坏裂纹主要分布在层间。随着温度的升高,拉伸 Z 向纱线的碳纤维单丝变得更加坚硬,断裂更加整齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
期刊最新文献
Editorial Board Research on the anti-frost performance of hydrophobic TiN-polymer composite coating on aluminum alloy surface Enhanced stress relaxation resistance and strength-electrical conductivity combination of graphene reinforced Cu-0.5La composite wire for high temperature applications Construction of Al3+-carboxymethyl cellulose superhydrophilic layer on wood filter surface for highly efficient oil/water emulsion separation Multiscale study on the synergistic effect of interface heat transfer and filler structure on enhancing the thermal conductivity of boron nitride/alumina/polyurethane composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1