Advances in the application of sensor arrays based on nanozymes

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Biosensors and Bioelectronics: X Pub Date : 2024-09-11 DOI:10.1016/j.biosx.2024.100542
Ying Ma, Heng Liu, Bin Li, Na Lu
{"title":"Advances in the application of sensor arrays based on nanozymes","authors":"Ying Ma,&nbsp;Heng Liu,&nbsp;Bin Li,&nbsp;Na Lu","doi":"10.1016/j.biosx.2024.100542","DOIUrl":null,"url":null,"abstract":"<div><p>As efficient biocatalysts, enzymes can catalyze various reactions under mild conditions, and have excellent substrate specificity and selectivity. However, the high cost of preparation and difficulty in recovery of natural enzymes have seriously hindered their practical applications. Compared with natural enzymes, the nanozymes with enzyme-like activities have unique advantages in activity regulation, high stability and large-scale preparation. Nanozymes have been widely concerned in the fields of biological detection, medical treatment and cellular immunity, and have a great application potential in the sensor array field. The sensor arrays have recently received an increasing attention due to their applicability in complex biological analysis and diagnosis. This review first summarizes the classification of nanozymes and their corresponding enzyme-like activities. The applications of nanozymes in various sensor arrays are then introduced, in particular, the detecting small molecule, protein and pesticide as nonspecific recognition receptors are addressed. Finally, the future development directions and design principles are prospected for overcoming current challenges, thus providing more opportunities for the application of nanozyme sensor arrays.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"21 ","pages":"Article 100542"},"PeriodicalIF":10.6100,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024001067/pdfft?md5=83b7fd0a51e1dded15c6ad7101314a85&pid=1-s2.0-S2590137024001067-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024001067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

As efficient biocatalysts, enzymes can catalyze various reactions under mild conditions, and have excellent substrate specificity and selectivity. However, the high cost of preparation and difficulty in recovery of natural enzymes have seriously hindered their practical applications. Compared with natural enzymes, the nanozymes with enzyme-like activities have unique advantages in activity regulation, high stability and large-scale preparation. Nanozymes have been widely concerned in the fields of biological detection, medical treatment and cellular immunity, and have a great application potential in the sensor array field. The sensor arrays have recently received an increasing attention due to their applicability in complex biological analysis and diagnosis. This review first summarizes the classification of nanozymes and their corresponding enzyme-like activities. The applications of nanozymes in various sensor arrays are then introduced, in particular, the detecting small molecule, protein and pesticide as nonspecific recognition receptors are addressed. Finally, the future development directions and design principles are prospected for overcoming current challenges, thus providing more opportunities for the application of nanozyme sensor arrays.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米酶的传感器阵列的应用进展
作为高效的生物催化剂,酶可以在温和的条件下催化各种反应,并具有极好的底物特异性和选择性。然而,天然酶的制备成本高、回收困难,严重阻碍了其实际应用。与天然酶相比,具有类酶活性的纳米酶在活性调节、高稳定性和大规模制备等方面具有独特的优势。纳米酶在生物检测、医疗和细胞免疫等领域受到广泛关注,在传感器阵列领域也有很大的应用潜力。近年来,传感器阵列因其在复杂生物分析和诊断中的应用而受到越来越多的关注。本综述首先概述了纳米酶的分类及其相应的类酶活性。然后介绍了纳米酶在各种传感器阵列中的应用,特别是作为非特异性识别受体的小分子、蛋白质和农药的检测。最后,展望了未来的发展方向和设计原则,以克服当前的挑战,从而为纳米酶传感器阵列的应用提供更多机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
期刊最新文献
Printed dry and ready-to-use in vitro diagnostic culture media devices for differentiation and antimicrobial susceptibility testing of bacteria Development of novel DNA aptamers and colorimetric nanozyme aptasensor for targeting multi-drug-resistant, invasive Salmonella typhimurium strain SMC25 Performance of label-free biosensors as a function of layer thickness Simple and sensitive method for in vitro monitoring of red blood cell viscoelasticity by Quartz Crystal Microbalance with dissipation monitoring (QCM-D) Targeted biosensors for intracellular lipid droplet content detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1