Non-invasive, fast, and high-performance EGFR gene mutation prediction method based on deep transfer learning and model stacking for patients with Non-Small Cell Lung Cancer

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2024-09-21 DOI:10.1016/j.ejro.2024.100601
Anass Benfares , Abdelali yahya Mourabiti , Badreddine Alami , Sara Boukansa , Nizar El Bouardi , Moulay Youssef Alaoui Lamrani , Hind El Fatimi , Bouchra Amara , Mounia Serraj , Smahi Mohammed , Cherkaoui Abdeljabbar , El affar Anass , Mamoun Qjidaa , Mustapha Maaroufi , Ouazzani Jamil Mohammed , Qjidaa Hassan
{"title":"Non-invasive, fast, and high-performance EGFR gene mutation prediction method based on deep transfer learning and model stacking for patients with Non-Small Cell Lung Cancer","authors":"Anass Benfares ,&nbsp;Abdelali yahya Mourabiti ,&nbsp;Badreddine Alami ,&nbsp;Sara Boukansa ,&nbsp;Nizar El Bouardi ,&nbsp;Moulay Youssef Alaoui Lamrani ,&nbsp;Hind El Fatimi ,&nbsp;Bouchra Amara ,&nbsp;Mounia Serraj ,&nbsp;Smahi Mohammed ,&nbsp;Cherkaoui Abdeljabbar ,&nbsp;El affar Anass ,&nbsp;Mamoun Qjidaa ,&nbsp;Mustapha Maaroufi ,&nbsp;Ouazzani Jamil Mohammed ,&nbsp;Qjidaa Hassan","doi":"10.1016/j.ejro.2024.100601","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To propose an intelligent, non-invasive, highly precise, and rapid method to predict the mutation status of the Epidermal Growth Factor Receptor (EGFR) to accelerate treatment with Tyrosine Kinase Inhibitor (TKI) for patients with untreated adenocarcinoma Non-Small Cell Lung Cancer.</p></div><div><h3>Materials and methods</h3><p>Real-world data from 521 patients with adenocarcinoma NSCLC who performed a CT scan and underwent surgery or pathological biopsy to determine EGFR gene mutation between January 2021 and July 2022, is collected. Solutions to the problems that prevent the model from achieving very high precision, namely: human errors made during the annotation of the database and the low precision of the output decision of the model, are proposed. Thus, among the 521 analyzed cases, only 40 were selected as patients with EGFR gene mutation and 98 cases with wild-type EGFR.</p></div><div><h3>Results</h3><p>The proposed model is trained, validated, and tested on 12,040 2D images extracted from the 138 CT scans images where patients were randomly partitioned into training (80 %) and test (20 %) sets. The performance obtained for EGFR gene mutation prediction was 95.22 % for accuracy, 960.2 for F1_score, 95.89 % for precision, 96.92 % for sensitivity, 94.01 % for Cohen kappa, and 98 % for AUC.</p></div><div><h3>Conclusion</h3><p>An EGFR gene mutation status prediction method, with high-performance thanks to an intelligent prediction model entrained by highly accurate annotated data is proposed. The outcome of this project will facilitate rapid decision-making when applying a TKI as an initial treatment.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S235204772400056X/pdfft?md5=6b569d6b0991ebec79c5235f88184fd5&pid=1-s2.0-S235204772400056X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235204772400056X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To propose an intelligent, non-invasive, highly precise, and rapid method to predict the mutation status of the Epidermal Growth Factor Receptor (EGFR) to accelerate treatment with Tyrosine Kinase Inhibitor (TKI) for patients with untreated adenocarcinoma Non-Small Cell Lung Cancer.

Materials and methods

Real-world data from 521 patients with adenocarcinoma NSCLC who performed a CT scan and underwent surgery or pathological biopsy to determine EGFR gene mutation between January 2021 and July 2022, is collected. Solutions to the problems that prevent the model from achieving very high precision, namely: human errors made during the annotation of the database and the low precision of the output decision of the model, are proposed. Thus, among the 521 analyzed cases, only 40 were selected as patients with EGFR gene mutation and 98 cases with wild-type EGFR.

Results

The proposed model is trained, validated, and tested on 12,040 2D images extracted from the 138 CT scans images where patients were randomly partitioned into training (80 %) and test (20 %) sets. The performance obtained for EGFR gene mutation prediction was 95.22 % for accuracy, 960.2 for F1_score, 95.89 % for precision, 96.92 % for sensitivity, 94.01 % for Cohen kappa, and 98 % for AUC.

Conclusion

An EGFR gene mutation status prediction method, with high-performance thanks to an intelligent prediction model entrained by highly accurate annotated data is proposed. The outcome of this project will facilitate rapid decision-making when applying a TKI as an initial treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度迁移学习和模型堆叠的非小细胞肺癌患者表皮生长因子受体基因突变无创、快速、高性能预测方法
目的提出一种智能、无创、高精度、快速预测表皮生长因子受体(EGFR)突变状态的方法,以加快未经治疗的腺癌非小细胞肺癌患者使用酪氨酸激酶抑制剂(TKI)的治疗。材料与方法 收集了 2021 年 1 月至 2022 年 7 月期间进行 CT 扫描并接受手术或病理活检以确定 EGFR 基因突变的 521 名腺癌 NSCLC 患者的真实世界数据。针对数据库注释过程中出现的人为错误和模型输出决策精度较低等阻碍模型达到极高精确度的问题,提出了解决方案。因此,在 521 个分析病例中,只有 40 例被选为表皮生长因子受体(EGFR)基因突变患者,98 例为表皮生长因子受体(EGFR)野生型患者。表皮生长因子受体基因突变预测的准确率为 95.22%,F1_score 为 960.2,精确度为 95.89%,灵敏度为 96.92%,Cohen kappa 为 94.01%,AUC 为 98%。该项目的成果将有助于在应用 TKI 作为初始治疗时快速做出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates Study on the classification of benign and malignant breast lesions using a multi-sequence breast MRI fusion radiomics and deep learning model True cost estimation of common imaging procedures for cost-effectiveness analysis - insights from a Singapore hospital emergency department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1