In-line flow-induced vibration of rotating elliptical cylinders

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-09-21 DOI:10.1016/j.jfluidstructs.2024.104186
{"title":"In-line flow-induced vibration of rotating elliptical cylinders","authors":"","doi":"10.1016/j.jfluidstructs.2024.104186","DOIUrl":null,"url":null,"abstract":"<div><p>This study numerically investigates the in-line flow-induced vibration (FIV) of elastically mounted elliptical cylinders undergoing forced rotations in a free-stream flow. The two-dimensional numerical simulations were conducted at a Reynolds number of 100. The cross-sectional aspect ratio (or elliptical ratio) of the cylinders varied from 1 to 0.25. The aspect/elliptical ratio is defined by <span><math><mrow><mi>ϵ</mi><mo>=</mo><mn>2</mn><mi>b</mi><mo>/</mo><mn>2</mn><mi>a</mi></mrow></math></span>, where <span><math><mrow><mn>2</mn><mi>a</mi></mrow></math></span> and <span><math><mrow><mn>2</mn><mi>b</mi></mrow></math></span> are the streamwise and cross-flow dimensions, respectively, of the cross-section of a cylinder placed at zero incidence angle. The Reynolds number is defined by <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mi>U</mi><mi>D</mi><mo>/</mo><mi>ν</mi></mrow></math></span>, where <span><math><mi>U</mi></math></span> is the free-stream velocity, <span><math><mi>ν</mi></math></span> is the kinematic viscosity of the fluid, and <span><math><mi>D</mi></math></span> is the major axis length (i.e. <span><math><mrow><mi>D</mi><mo>=</mo><mn>2</mn><mi>a</mi></mrow></math></span>). The dimensionless rotation rate, defined by <span><math><mrow><mi>α</mi><mo>=</mo><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow><mi>D</mi><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mi>U</mi><mo>)</mo></mrow></mrow></math></span>, is varied at values of 0.2, 0.5, 1 and 2, where <span><math><mi>Ω</mi></math></span> represents the angular velocity of the body rotation. The FIV response is examined as a function of reduced velocity, defined by <span><math><mrow><msup><mrow><mi>U</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mi>U</mi><mo>/</mo><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mi>D</mi><mo>)</mo></mrow></mrow></math></span>, with <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> being the natural frequency of the system. Interestingly, two synchronisation modes were identified: a “rotation-dominated” (RD) mode and a “wake-dominated” (WD) mode. For <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>.</mo><mn>2</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, the RD mode was found to be associated with significantly high-amplitude vibration, while the WD mode was associated with low-amplitude vibration. However, as <span><math><mi>α</mi></math></span> increased to 2, the WD region exhibited a higher amplitude peak compared to the RD region. The maximum vibration amplitude in the present study was observed to be approximately <span><math><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mi>D</mi></mrow></math></span>, occurring for <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span>. A further analysis of the wake structure revealed that vortex feeding or merging behaviour occurred at <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>, 1 and 2 for <span><math><mrow><mi>ϵ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>25</mn></mrow></math></span> and <span><math><mrow><mi>ϵ</mi><mo>⩽</mo><mn>0</mn><mo>.</mo><mn>75</mn></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>. Increasing the rotation rate or the aspect ratio could weaken the impact of rotation on vibration, resulting in a reduction in the peak vibration amplitude of RD region. Notably, harmonic frequency components exceeding the rotation frequency were observed for <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span>. Further investigation with the fixed body revealed that the wake pattern of the rotating elliptical cylinder undergoes a transition when <span><math><mrow><mi>α</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>3</mn></mrow></math></span>, exhibiting significant instability characterised by the superposition of high-order harmonic components.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088997462400121X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study numerically investigates the in-line flow-induced vibration (FIV) of elastically mounted elliptical cylinders undergoing forced rotations in a free-stream flow. The two-dimensional numerical simulations were conducted at a Reynolds number of 100. The cross-sectional aspect ratio (or elliptical ratio) of the cylinders varied from 1 to 0.25. The aspect/elliptical ratio is defined by ϵ=2b/2a, where 2a and 2b are the streamwise and cross-flow dimensions, respectively, of the cross-section of a cylinder placed at zero incidence angle. The Reynolds number is defined by Re=UD/ν, where U is the free-stream velocity, ν is the kinematic viscosity of the fluid, and D is the major axis length (i.e. D=2a). The dimensionless rotation rate, defined by α=|Ω|D/(2U), is varied at values of 0.2, 0.5, 1 and 2, where Ω represents the angular velocity of the body rotation. The FIV response is examined as a function of reduced velocity, defined by U=U/(fnD), with fn being the natural frequency of the system. Interestingly, two synchronisation modes were identified: a “rotation-dominated” (RD) mode and a “wake-dominated” (WD) mode. For α{0.2,0.5,1}, the RD mode was found to be associated with significantly high-amplitude vibration, while the WD mode was associated with low-amplitude vibration. However, as α increased to 2, the WD region exhibited a higher amplitude peak compared to the RD region. The maximum vibration amplitude in the present study was observed to be approximately 0.5D, occurring for α=0.2. A further analysis of the wake structure revealed that vortex feeding or merging behaviour occurred at α=0.5, 1 and 2 for ϵ=0.25 and ϵ0.75 for α=0.5. Increasing the rotation rate or the aspect ratio could weaken the impact of rotation on vibration, resulting in a reduction in the peak vibration amplitude of RD region. Notably, harmonic frequency components exceeding the rotation frequency were observed for α=0.2. Further investigation with the fixed body revealed that the wake pattern of the rotating elliptical cylinder undergoes a transition when α<0.3, exhibiting significant instability characterised by the superposition of high-order harmonic components.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转椭圆形气缸的在线流动诱导振动
本研究以数值方法研究了在自由流中受力旋转的弹性安装椭圆形圆柱体的线内流动诱导振动(FIV)。二维数值模拟在雷诺数为 100 时进行。圆柱体的横截面长宽比(或椭圆比)从 1 到 0.25 不等。长宽比/椭圆比的定义是 ϵ=2b/2a,其中 2a 和 2b 分别是零入射角放置的圆柱体横截面的流向尺寸和横流尺寸。雷诺数的定义是 Re=UD/ν,其中 U 是自由流速度,ν 是流体的运动粘度,D 是主轴长度(即 D=2a)。无量纲旋转速率的定义为 α=|Ω|D/(2U),其变化值为 0.2、0.5、1 和 2,其中 Ω 代表主体旋转的角速度。根据 U∗=U/(fnD) 的定义(ffn 是系统的固有频率),将 FIV 响应作为减速度的函数进行检验。有趣的是,研究发现了两种同步模式:"旋转主导"(RD)模式和 "唤醒主导"(WD)模式。对于 α∈{0.2,0.5,1},发现 RD 模式与明显的高振幅振动相关,而 WD 模式与低振幅振动相关。然而,当 α 增大到 2 时,WD 区域的振幅峰值高于 RD 区域。本研究中观察到的最大振幅约为 0.5D,发生在 α=0.2 时。对尾流结构的进一步分析表明,当ϵ=0.25 时,α=0.5、1 和 2 时出现涡流馈入或合并行为;当 α=0.5 时,ϵ⩽0.75 时出现涡流馈入或合并行为。提高旋转率或长宽比可以减弱旋转对振动的影响,从而降低 RD 区域的峰值振幅。值得注意的是,在 α=0.2 时,观察到了超过旋转频率的谐波频率成分。通过对固定体的进一步研究发现,当 α<0.3 时,旋转椭圆形圆柱体的唤醒模式会发生转变,表现出明显的不稳定性,其特征是高阶谐波成分的叠加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
A new approach for spatio-temporal interface treatment in fluid–solid interaction using artificial neural networks employing coupled partitioned fluid–solid solvers Condensation solution method for fluid-structure interaction dynamic models of structural system Turbulence-induced vibration in annular flow of a rigid cylinder mounted on a cantilever beam Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1