Proton-gated organic thin-film transistors for leaky integrate-and-fire convolutional spiking neural networks

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Organic Electronics Pub Date : 2024-09-16 DOI:10.1016/j.orgel.2024.107144
Xiang Wan , Shengnan Cui , Changqing Li , Jie Yan , Fuguo Tian , Haoyang Luo , Zhongzhong Luo , Li Zhu , Zhihao Yu , Dongyoon Khim , Liuyang Sun , Yong Xu , Huabin Sun
{"title":"Proton-gated organic thin-film transistors for leaky integrate-and-fire convolutional spiking neural networks","authors":"Xiang Wan ,&nbsp;Shengnan Cui ,&nbsp;Changqing Li ,&nbsp;Jie Yan ,&nbsp;Fuguo Tian ,&nbsp;Haoyang Luo ,&nbsp;Zhongzhong Luo ,&nbsp;Li Zhu ,&nbsp;Zhihao Yu ,&nbsp;Dongyoon Khim ,&nbsp;Liuyang Sun ,&nbsp;Yong Xu ,&nbsp;Huabin Sun","doi":"10.1016/j.orgel.2024.107144","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial spiking neurons, integral to the functionality of spiking neural networks, are designed to mimic the information transmission via discrete spikes in biological nervous systems. Traditional approaches that necessitate the charging of capacitors and the inclusion of discharge circuits for neuron membrane potential integration and leakage, present challenges in terms of cost and space efficiency. To overcome the challenges, this work proposes a hardware leaky integrate-and-fire neuron based on organic thin-film transistors. Under the electric field, the ion dynamics in the gate electrolyte can mimic the processes of membrane potential integration, leakage, and reset in spiking neurons. The convolutional spiking neural networks composed of such organic spiking neurons achieves excellent recognition rates (∼97.26 %) on the MNIST dataset. This indicates that the organic spiking neuron has enormous potential in next-generation non-von Neumann neuromorphic computing.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"135 ","pages":"Article 107144"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001551","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial spiking neurons, integral to the functionality of spiking neural networks, are designed to mimic the information transmission via discrete spikes in biological nervous systems. Traditional approaches that necessitate the charging of capacitors and the inclusion of discharge circuits for neuron membrane potential integration and leakage, present challenges in terms of cost and space efficiency. To overcome the challenges, this work proposes a hardware leaky integrate-and-fire neuron based on organic thin-film transistors. Under the electric field, the ion dynamics in the gate electrolyte can mimic the processes of membrane potential integration, leakage, and reset in spiking neurons. The convolutional spiking neural networks composed of such organic spiking neurons achieves excellent recognition rates (∼97.26 %) on the MNIST dataset. This indicates that the organic spiking neuron has enormous potential in next-generation non-von Neumann neuromorphic computing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子门控有机薄膜晶体管用于漏电集火卷积尖峰神经网络
人工尖峰神经元是尖峰神经网络功能中不可或缺的部分,旨在模拟生物神经系统中通过离散尖峰进行的信息传输。传统方法需要对电容器充电,并在神经元膜电位整合和泄漏时加入放电电路,这给成本和空间效率带来了挑战。为了克服这些挑战,本研究提出了一种基于有机薄膜晶体管的硬件漏电整合和放电神经元。在电场作用下,栅极电解质中的离子动力学可以模拟尖峰神经元的膜电位整合、泄漏和复位过程。由这种有机尖峰神经元组成的卷积尖峰神经网络在 MNIST 数据集上实现了出色的识别率(97.26%)。这表明有机尖峰神经元在下一代非冯诺依曼神经形态计算中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
期刊最新文献
High triplet hexahydroacridine derivatives as a host prevent exciton diffusion to adjacent layers in solution processed OLEDs Naphthalene-Arylamine starburst architectures: Novel hole transport materials for enhanced OLED performance Cyclic(amino)(barrelene)carbene metal amide complexes: Synthesis and thermally activated delayed fluorescence Interface modification based on norfloxacin for enhancing the performance of the inverted perovskite solar cells Recent progress in high-performance thermally activated delayed fluorescence exciplexes based on multiple reverse intersystem crossing channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1