Electron‐rich SnO2 promote CO2 activation for stable electrocatalytic CO2 reduction

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-09-19 DOI:10.1016/j.jcis.2024.09.157
{"title":"Electron‐rich SnO2 promote CO2 activation for stable electrocatalytic CO2 reduction","authors":"","doi":"10.1016/j.jcis.2024.09.157","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to formate offers a promising route for carbon neutralization, but its reactivity is largely compromised due to the competitive hydrogen evolution reaction (HER) accompanying the activation of CO<sub>2</sub> at high potentials. Herein, we modulated the charge density around Sn atoms by introducing La<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> into SnO<sub>2</sub>, with the rich grain boundaries and fast electron transport of the heterostructure promoting CO<sub>2</sub> reduction. Combined theoretical calculations and <em>in situ</em> electrochemical attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) characterization revealed enhanced activation of CO<sub>2</sub> and adsorption of *OCHO intermediates by the constructed electron-rich SnO<sub>2</sub>. During the CO<sub>2</sub>RR process over 5 % La<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>/SnO<sub>2</sub> catalyst, the Sn oxidation state can be effectively stabilized by the oxygen vacancies and amorphous phases appearing around SnO<sub>2</sub>, with a FE of 70.7 % for HCOOH at −0.9 V <em>vs.</em> RHE and stable electrolysis of 39 h. This work provides an ideal approach for the development of highly stable Sn-based electrocatalysts.</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724022215","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic CO2 reduction reaction (CO2RR) to formate offers a promising route for carbon neutralization, but its reactivity is largely compromised due to the competitive hydrogen evolution reaction (HER) accompanying the activation of CO2 at high potentials. Herein, we modulated the charge density around Sn atoms by introducing La2Sn2O7 into SnO2, with the rich grain boundaries and fast electron transport of the heterostructure promoting CO2 reduction. Combined theoretical calculations and in situ electrochemical attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) characterization revealed enhanced activation of CO2 and adsorption of *OCHO intermediates by the constructed electron-rich SnO2. During the CO2RR process over 5 % La2Sn2O7/SnO2 catalyst, the Sn oxidation state can be effectively stabilized by the oxygen vacancies and amorphous phases appearing around SnO2, with a FE of 70.7 % for HCOOH at −0.9 V vs. RHE and stable electrolysis of 39 h. This work provides an ideal approach for the development of highly stable Sn-based electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富电子二氧化锡促进二氧化碳活化,实现稳定的电催化二氧化碳还原
电催化二氧化碳还原反应(CO2RR)生成甲酸盐为碳中和提供了一条很有前景的途径,但由于二氧化碳在高电位活化时会发生竞争性氢进化反应(HER),其反应活性在很大程度上受到了影响。在这里,我们通过在二氧化锡中引入 La2Sn2O7 来调节锡原子周围的电荷密度,异质结构丰富的晶界和快速的电子传输促进了二氧化碳的还原。结合理论计算和原位电化学衰减全反射傅立叶变换红外光谱(ATR-FTIR)表征,我们发现所构建的富电子二氧化锡增强了二氧化碳的活化和*OCHO中间产物的吸附。在 5 % La2Sn2O7/SnO2 催化剂的 CO2RR 过程中,SnO2 周围出现的氧空位和无定形相有效地稳定了 Sn 的氧化态,在 -0.9 V 对 RHE 条件下,HCOOH 的 FE 为 70.7 %,电解时间稳定在 39 h。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Mo2C-Co heterostructure with carbon nanosheets decorated carbon microtubules: Different means for high-performance lithium-sulfur batteries. Multiple-perspective design of hollow-structured cerium-vanadium-based nanopillar arrays for enhanced overall water electrolysis. NIR responsive nanosystem based on upconversion nanoparticle-engineered bacteria for immune/photodynamic combined therapy with bacteria self-clearing capability Electron‐rich SnO2 promote CO2 activation for stable electrocatalytic CO2 reduction Unravelling the anionic stability of an ether-based electrolyte with a hard carbon or metallic sodium anode for high-performance sodium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1