Hydrometeorology-wildfire relationship analysis based on a wildfire bivariate probabilistic framework in different ecoregions of the continental United States
{"title":"Hydrometeorology-wildfire relationship analysis based on a wildfire bivariate probabilistic framework in different ecoregions of the continental United States","authors":"Ke Shi , Yoshiya Touge , So Kazama","doi":"10.1016/j.agrformet.2024.110215","DOIUrl":null,"url":null,"abstract":"<div><p>Wildfires are a natural part of the ecosystem in the U.S.. It is vital to classify wildfires using a comprehensive approach that simultaneously considers wildfire activity (the number of wildfires) and burned area. On this basis, the influence of hydrometeorological variables on wildfires can be further analyzed. Therefore, this study first classified wildfire types using a wildfire bivariate probability framework. Then, by considering six hydrometeorological variables, the dominant hydrometeorological variables for different wildfire types in 17 ecoregions of the United States were quantified. In addition, based on the results of this hydrometeorology-wildfire relationship analysis, we obtained new clusters that simultaneously considered wildfire characteristics and the impact of hydrometeorology on wildfires. In particular, the results were as follows: (1) Through the probability of wildfire bivariate statistical characteristics, wildfires could be classified into five types in this paper: WT-1 (mega-wildfire), WT-2 (joint wildfire-1), WT-3 (joint extremes), WT-4 (joint wildfire-2), and WT-5 (super frequent wildfires); (2) The dominant hydrometeorological variables under different wildfire types were discussed in 17 ecoregions of the United States; and (3) In the four new cluster regions, intensifying droughts are a concern in clusters 1 and 4, while there are multiple concerns in cluster 3, namely, stronger winds, higher temperatures, and more drought.</p></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"358 ","pages":"Article 110215"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168192324003289/pdfft?md5=ddb8f2dcd03eaf5c49308c569164bd41&pid=1-s2.0-S0168192324003289-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324003289","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Wildfires are a natural part of the ecosystem in the U.S.. It is vital to classify wildfires using a comprehensive approach that simultaneously considers wildfire activity (the number of wildfires) and burned area. On this basis, the influence of hydrometeorological variables on wildfires can be further analyzed. Therefore, this study first classified wildfire types using a wildfire bivariate probability framework. Then, by considering six hydrometeorological variables, the dominant hydrometeorological variables for different wildfire types in 17 ecoregions of the United States were quantified. In addition, based on the results of this hydrometeorology-wildfire relationship analysis, we obtained new clusters that simultaneously considered wildfire characteristics and the impact of hydrometeorology on wildfires. In particular, the results were as follows: (1) Through the probability of wildfire bivariate statistical characteristics, wildfires could be classified into five types in this paper: WT-1 (mega-wildfire), WT-2 (joint wildfire-1), WT-3 (joint extremes), WT-4 (joint wildfire-2), and WT-5 (super frequent wildfires); (2) The dominant hydrometeorological variables under different wildfire types were discussed in 17 ecoregions of the United States; and (3) In the four new cluster regions, intensifying droughts are a concern in clusters 1 and 4, while there are multiple concerns in cluster 3, namely, stronger winds, higher temperatures, and more drought.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.