{"title":"Separation and characterization of degradation impurities of upadacitinib by liquid chromatography and high resolution mass spectrometry","authors":"Sowmya Chaganti , Chagnya Nelapati , Drishti Jain , Roshitha K.R. , Vinaykumar Kanchupalli , Gananadhamu Samanthula","doi":"10.1016/j.jchromb.2024.124319","DOIUrl":null,"url":null,"abstract":"<div><p>Upadacitinib is an oral Janus Kinase inhibitor used for the treatment of rheumatoid arthritis. This research focuses on the forced degradation study of upadacitinib and the characterization of its degradation impurities. Upadacitinib was subjected to various degradation conditions such as hydrolysis (acid, base, neutral), oxidation, thermal, and photolysis according to International Council for Harmonisation guidelines. Twelve degradation impurities of upadacitinib were observed under oxidation (H<sub>2</sub>O<sub>2</sub>, AIBN, Fenton’s reagent) and photolysis (UV light). Zeneth software was used to predict the <em>in silico</em> degradation profile. High-performance liquid chromatography was used to separate the observed degradation impurities with ammonium formate (pH 3.63) and acetonitrile as mobile phases on an Agilent Zorbax Eclipse plus C18 column (4.6 × 250 mm, 5 µm). The separated degradation impurities were characterized by using high resolution mass spectrometry. The accurate masses obtained from LC-HRMS/MS were used to determine the structures of all the degradation impurities. A suitable mechanism for the formation of degradation impurities was proposed. DEREK Nexus and SARAH Nexus were used for the <em>in silico</em> toxicity and mutagenicity assessments.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1247 ","pages":"Article 124319"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023224003283","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Upadacitinib is an oral Janus Kinase inhibitor used for the treatment of rheumatoid arthritis. This research focuses on the forced degradation study of upadacitinib and the characterization of its degradation impurities. Upadacitinib was subjected to various degradation conditions such as hydrolysis (acid, base, neutral), oxidation, thermal, and photolysis according to International Council for Harmonisation guidelines. Twelve degradation impurities of upadacitinib were observed under oxidation (H2O2, AIBN, Fenton’s reagent) and photolysis (UV light). Zeneth software was used to predict the in silico degradation profile. High-performance liquid chromatography was used to separate the observed degradation impurities with ammonium formate (pH 3.63) and acetonitrile as mobile phases on an Agilent Zorbax Eclipse plus C18 column (4.6 × 250 mm, 5 µm). The separated degradation impurities were characterized by using high resolution mass spectrometry. The accurate masses obtained from LC-HRMS/MS were used to determine the structures of all the degradation impurities. A suitable mechanism for the formation of degradation impurities was proposed. DEREK Nexus and SARAH Nexus were used for the in silico toxicity and mutagenicity assessments.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.