IoT enhanced deep water culture hydroponic system for optimizing Chinese celery yield and economic evaluation

IF 6.3 Q1 AGRICULTURAL ENGINEERING Smart agricultural technology Pub Date : 2024-08-28 DOI:10.1016/j.atech.2024.100545
{"title":"IoT enhanced deep water culture hydroponic system for optimizing Chinese celery yield and economic evaluation","authors":"","doi":"10.1016/j.atech.2024.100545","DOIUrl":null,"url":null,"abstract":"<div><p>This study examined the integration of a deep-water culture hydroponic system with Internet of Things (IoT) technology using Blynk and ESP32 microcontrollers for Chinese celery cultivation. Four experimental setups in 2 x 6 meter greenhouses with 1.2-meter high planting shelves were tested, comprising 1) combined light and temperature control, 2) temperature control, 3) light control, and 4) natural conditions. A 45-day experiment was conducted under equal electrical conductivity (EC) and pH levels across all greenhouses. Light control utilized artificial light at a wavelength of 660 nm from 6:00 PM to 11:00 PM, while temperature control employed a misting system activated when temperatures exceeded 35°C. Data collected every 5-7 days were analyzed using the Friedman test. The fully controlled greenhouse yielded 13.91% more than natural conditions, 30.3 kg vs 26.6 kg, with significant weight differences (χ² = 8.850, p &lt; 0.05) approximately 25 days after planting. Economic analysis revealed that the controlled greenhouse yielded the highest net profit of 750.18 USD per year with a 13-month payback period, whereas the natural conditions greenhouse demonstrated the highest return on investment (ROI) of 131.00% and the shortest payback period of 9 months, despite producing the lowest yield. The results demonstrate that IoT-controlled environments can significantly increase crop yields, though economic viability may vary.</p></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772375524001503/pdfft?md5=522ad02f15a557848fcfc58d8f2bc5d5&pid=1-s2.0-S2772375524001503-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375524001503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined the integration of a deep-water culture hydroponic system with Internet of Things (IoT) technology using Blynk and ESP32 microcontrollers for Chinese celery cultivation. Four experimental setups in 2 x 6 meter greenhouses with 1.2-meter high planting shelves were tested, comprising 1) combined light and temperature control, 2) temperature control, 3) light control, and 4) natural conditions. A 45-day experiment was conducted under equal electrical conductivity (EC) and pH levels across all greenhouses. Light control utilized artificial light at a wavelength of 660 nm from 6:00 PM to 11:00 PM, while temperature control employed a misting system activated when temperatures exceeded 35°C. Data collected every 5-7 days were analyzed using the Friedman test. The fully controlled greenhouse yielded 13.91% more than natural conditions, 30.3 kg vs 26.6 kg, with significant weight differences (χ² = 8.850, p < 0.05) approximately 25 days after planting. Economic analysis revealed that the controlled greenhouse yielded the highest net profit of 750.18 USD per year with a 13-month payback period, whereas the natural conditions greenhouse demonstrated the highest return on investment (ROI) of 131.00% and the shortest payback period of 9 months, despite producing the lowest yield. The results demonstrate that IoT-controlled environments can significantly increase crop yields, though economic viability may vary.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化中国芹菜产量的物联网增强型深水栽培水培系统及经济评价
本研究考察了利用 Blynk 和 ESP32 微控制器将深水栽培水培系统与物联网(IoT)技术相结合用于中国芹菜栽培的情况。在带有 1.2 米高种植架的 2 x 6 米温室中测试了四种实验设置,包括:1)光照和温度联合控制;2)温度控制;3)光照控制;4)自然条件。所有温室都在电导率(EC)和 pH 值相同的条件下进行了为期 45 天的试验。光照控制采用波长为 660 纳米的人工光源,时间为下午 6:00 至晚上 11:00;温度控制采用喷雾系统,当温度超过 35°C 时启动。采用弗里德曼检验法对每 5-7 天收集的数据进行分析。完全受控温室的产量比自然条件下的产量高 13.91%,分别为 30.3 千克和 26.6 千克,播种后约 25 天的重量差异显著(χ² = 8.850,p < 0.05)。经济分析表明,受控温室每年净利润最高,达 750.18 美元,投资回收期为 13 个月;而自然条件温室尽管产量最低,但投资回报率(ROI)最高,达 131.00%,投资回收期最短,为 9 个月。结果表明,物联网控制环境可以显著提高作物产量,但经济可行性可能会有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Development of a low-cost smart irrigation system for sustainable water management in the Mediterranean region Cover crop impacts on soil organic matter dynamics and its quantification using UAV and proximal sensing Design and development of machine vision robotic arm for vegetable crops in hydroponics Cybersecurity threats and mitigation measures in agriculture 4.0 and 5.0 Farmer's attitudes towards GHG emissions and adoption to low-cost sensor-driven smart farming for mitigation: The case of Ireland tillage and horticultural farmers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1