{"title":"Novel electrochromic-supercapacitor device based on P(TPACz)/WO3-PDA nanocomposite film","authors":"Xiangyu Yin , Pengna Wang , Shengqing Zheng","doi":"10.1016/j.ijoes.2024.100798","DOIUrl":null,"url":null,"abstract":"<div><p>Organic–inorganic composites of (<em>E</em>)-3,5-di(9 H-carbazol-9-yl)-N-(4-(diphenylamino)benzylidene)aniline/dopamine-modified WO<sub>3</sub> (P(TPACz)/WO<sub>3</sub>-PDA) were prepared by electrochemical polymerisation. The as-prepared P(TPACz)/WO<sub>3</sub>-PDA composites showed good electrochromic and electrochemical performance. The prominent electrochemical performance of P(TPACz)/WO<sub>3</sub>-PDA represents a high areal capacitance (32.15 mF cm<sup>−2</sup> at 0.1 mA cm<sup>−2</sup>) and wide range of potential windows (-2.0−1.6 V). Additionally, symmetric supercapacitor devices based on P(TPACz)/WO<sub>3</sub>-PDA composite films were successfully constructed, which exhibited a high specific capacitance (13.88 mF cm<sup>−2</sup> at 0.02 mA cm<sup>−2</sup>) and an energy density of 7.71 × 10<sup>−3</sup> mWh cm<sup>−2</sup> in n-doped station. The remarkable electrochromic and electrochemical performances are due to the synergy between the organic polymer and WO<sub>3</sub>-PDA. A complete large-area composite film structure with high conductivity promises fast electronic transport. This study provides a method for preparing multifunctional composite electrode materials, offering technical support for intelligent displays and energy storage technologies.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1452398124003407/pdfft?md5=5a2f1df253a9dc348d4fda8baa899468&pid=1-s2.0-S1452398124003407-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124003407","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic–inorganic composites of (E)-3,5-di(9 H-carbazol-9-yl)-N-(4-(diphenylamino)benzylidene)aniline/dopamine-modified WO3 (P(TPACz)/WO3-PDA) were prepared by electrochemical polymerisation. The as-prepared P(TPACz)/WO3-PDA composites showed good electrochromic and electrochemical performance. The prominent electrochemical performance of P(TPACz)/WO3-PDA represents a high areal capacitance (32.15 mF cm−2 at 0.1 mA cm−2) and wide range of potential windows (-2.0−1.6 V). Additionally, symmetric supercapacitor devices based on P(TPACz)/WO3-PDA composite films were successfully constructed, which exhibited a high specific capacitance (13.88 mF cm−2 at 0.02 mA cm−2) and an energy density of 7.71 × 10−3 mWh cm−2 in n-doped station. The remarkable electrochromic and electrochemical performances are due to the synergy between the organic polymer and WO3-PDA. A complete large-area composite film structure with high conductivity promises fast electronic transport. This study provides a method for preparing multifunctional composite electrode materials, offering technical support for intelligent displays and energy storage technologies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.