Rubens Sautchuk Jr , John Martinez , Sarah E. Catheline , Roman A. Eliseev
{"title":"Cyclophilin D, regulator of the mitochondrial permeability transition, impacts bone development and fracture repair","authors":"Rubens Sautchuk Jr , John Martinez , Sarah E. Catheline , Roman A. Eliseev","doi":"10.1016/j.bone.2024.117258","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondrial Permeability Transition Pore (MPTP) and its key positive regulator, Cyclophilin D (CypD), control activity of cell oxidative metabolism important for differentiation of stem cells of various lineages including osteogenic lineage. Our previous work (Sautchuk et al., 2022) showed that CypD gene, <em>Ppif</em>, is transcriptionally repressed during osteogenic differentiation by regulatory Smad transcription factors in BMP canonical pathway, a major driver of osteoblast (OB) differentiation. Such a repression favors closure of the MPTP, priming OBs to higher usage of mitochondrial oxidative metabolism. The physiological role of CypD/MPTP regulation was demonstrated by its inverse correlation with BMP signaling in aging and bone fracture healing in addition to the negative effect of CypD gain-of-function (GOF) on bone maintenance. Here we show evidence that CypD GOF also negatively affects bone development and growth as well as fracture healing in adult mice. Developing craniofacial and long bones presented with delayed ossification and decreased growth rate, respectively, whereas in fracture, bony callus volume was diminished. Given that Genome Wide Association Studies showed that <em>PPIF</em> locus is associated with both body height and bone mineral density, our new data provide functional evidence for the role of <em>PPIF</em> gene product, CypD, and thus MPTP in bone growth and repair.</p></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"189 ","pages":"Article 117258"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328224002473","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial Permeability Transition Pore (MPTP) and its key positive regulator, Cyclophilin D (CypD), control activity of cell oxidative metabolism important for differentiation of stem cells of various lineages including osteogenic lineage. Our previous work (Sautchuk et al., 2022) showed that CypD gene, Ppif, is transcriptionally repressed during osteogenic differentiation by regulatory Smad transcription factors in BMP canonical pathway, a major driver of osteoblast (OB) differentiation. Such a repression favors closure of the MPTP, priming OBs to higher usage of mitochondrial oxidative metabolism. The physiological role of CypD/MPTP regulation was demonstrated by its inverse correlation with BMP signaling in aging and bone fracture healing in addition to the negative effect of CypD gain-of-function (GOF) on bone maintenance. Here we show evidence that CypD GOF also negatively affects bone development and growth as well as fracture healing in adult mice. Developing craniofacial and long bones presented with delayed ossification and decreased growth rate, respectively, whereas in fracture, bony callus volume was diminished. Given that Genome Wide Association Studies showed that PPIF locus is associated with both body height and bone mineral density, our new data provide functional evidence for the role of PPIF gene product, CypD, and thus MPTP in bone growth and repair.
期刊介绍:
BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.