Rational strategy for power doubling of monolithic multijunction III-V photovoltaics by accommodating attachable scattering waveguides.

IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL ACS Medicinal Chemistry Letters Pub Date : 2024-09-20 DOI:10.1038/s41377-024-01628-6
Shin Hyung Lee,Hyo Jin Kim,Jae-Hyun Kim,Gwang Yeol Park,Sun-Kyung Kim,Sung-Min Lee
{"title":"Rational strategy for power doubling of monolithic multijunction III-V photovoltaics by accommodating attachable scattering waveguides.","authors":"Shin Hyung Lee,Hyo Jin Kim,Jae-Hyun Kim,Gwang Yeol Park,Sun-Kyung Kim,Sung-Min Lee","doi":"10.1038/s41377-024-01628-6","DOIUrl":null,"url":null,"abstract":"While waveguide-based light concentrators offer significant advantages, their application has not been considered an interesting option for assisting multijunction or other two-terminal tandem solar cells. In this study, we present a simple yet effective approach to enhancing the output power of transfer-printed multijunction InGaP/GaAs solar cells. By utilizing a simply combinable waveguide concentrator featuring a coplanar waveguide with BaSO4 Mie scattering elements, we enable the simultaneous absorption of directly illuminated solar flux and indirectly waveguided flux. The deployment of cells is optimized for front-surface photon collection in monofacial cells. Through systematic comparisons across various waveguide parameters, supported by both experimental and theoretical quantifications, we demonstrate a remarkable improvement in the maximum output power of a 26%-efficient cell, achieving an enhancement of ~93% with the integration of the optimal scattering waveguide. Additionally, a series of supplementary tests are conducted to explore the effective waveguide size, validate enhancements in arrayed cell module performance, and assess the drawbacks associated with rear illumination. These findings provide a comprehensive understanding of our proposed approach towards advancing multi-junction photovoltaics.","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"19 1","pages":"261"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01628-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

While waveguide-based light concentrators offer significant advantages, their application has not been considered an interesting option for assisting multijunction or other two-terminal tandem solar cells. In this study, we present a simple yet effective approach to enhancing the output power of transfer-printed multijunction InGaP/GaAs solar cells. By utilizing a simply combinable waveguide concentrator featuring a coplanar waveguide with BaSO4 Mie scattering elements, we enable the simultaneous absorption of directly illuminated solar flux and indirectly waveguided flux. The deployment of cells is optimized for front-surface photon collection in monofacial cells. Through systematic comparisons across various waveguide parameters, supported by both experimental and theoretical quantifications, we demonstrate a remarkable improvement in the maximum output power of a 26%-efficient cell, achieving an enhancement of ~93% with the integration of the optimal scattering waveguide. Additionally, a series of supplementary tests are conducted to explore the effective waveguide size, validate enhancements in arrayed cell module performance, and assess the drawbacks associated with rear illumination. These findings provide a comprehensive understanding of our proposed approach towards advancing multi-junction photovoltaics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过容纳可附加散射波导实现单片多结 III-V 光电功率倍增的合理策略。
虽然基于波导的聚光器具有显著优势,但其应用尚未被视为辅助多结或其他双端串联太阳能电池的有趣选择。在本研究中,我们提出了一种简单而有效的方法来提高转移印刷多结 InGaP/GaAs 太阳能电池的输出功率。通过利用一个简单可组合的波导聚光器,即带有 BaSO4 Mie 散射元件的共面波导,我们实现了同时吸收直接照射的太阳光通量和间接波导光通量。我们对电池的部署进行了优化,以便在单面电池中收集前表面光子。在实验和理论量化的支持下,通过对各种波导参数进行系统比较,我们证明 26% 效率电池的最大输出功率有了显著提高,在集成了最佳散射波导后提高了约 93%。此外,我们还进行了一系列补充测试,以探索有效波导尺寸,验证阵列电池模块性能的提升,并评估与后部照明相关的缺点。这些研究结果使人们对我们提出的推进多结光伏技术的方法有了全面的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
期刊最新文献
Issue Editorial Masthead Issue Publication Information In This Issue, Volume 15, Issue 11 The brightest multi-colour phonon lasers If you can’t beat them, join them: Anti-CRISPR proteins derived from CRISPR-associated genes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1