首页 > 最新文献

ACS Medicinal Chemistry Letters最新文献

英文 中文
Discovery of a Phosphodiesterase 7A Inhibitor of High Isozyme Selectivity Exhibiting In Vivo Anti-Osteoporotic Effects.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-27 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00570
Kentaro Kondo, Kazuki Otake, Tetsudo Kaya, Shohei Miwa, Yoshifumi Ueyama, Tsunemitsu Haruta, Jun Nishihata, Takashi Nakagawa, Nobuhide Azuma, Kayoko Takagi, Toshiki Urashima, Yuki Kitao, Makoto Shiozaki

Phosphodiesterases (PDEs) have drawn attention due to their critical roles in physiological and pathological conditions. Many research groups have studied these hydrolytic enzymes to develop new drugs, including apremilast as a PDE4 inhibitor and sildenafil as a PDE5 inhibitor. Targeting PDE7 has also been deemed a rational strategy to ameliorate autoimmune conditions. However, to date, no successful clinical results have been reported. We postulated that progress in these studies with PDE7 had been hampered by the lack of a potent ligand with a reasonable selectivity for this PDE isozyme. Therefore, starting from a PDE7A/7B dual inhibitor, our investigations led to improved selectivity along with extended metabolic stability, resulting in a novel PDE7A inhibitor 26. This compound with high selectivity over the closest isozyme is an ideal chemical entity to unveil new pharmacological roles of PDE7A-dependent signaling, as exemplified by the in vivo antiosteoporotic effects.

{"title":"Discovery of a Phosphodiesterase 7A Inhibitor of High Isozyme Selectivity Exhibiting <i>In Vivo</i> Anti-Osteoporotic Effects.","authors":"Kentaro Kondo, Kazuki Otake, Tetsudo Kaya, Shohei Miwa, Yoshifumi Ueyama, Tsunemitsu Haruta, Jun Nishihata, Takashi Nakagawa, Nobuhide Azuma, Kayoko Takagi, Toshiki Urashima, Yuki Kitao, Makoto Shiozaki","doi":"10.1021/acsmedchemlett.4c00570","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00570","url":null,"abstract":"<p><p>Phosphodiesterases (PDEs) have drawn attention due to their critical roles in physiological and pathological conditions. Many research groups have studied these hydrolytic enzymes to develop new drugs, including apremilast as a PDE4 inhibitor and sildenafil as a PDE5 inhibitor. Targeting PDE7 has also been deemed a rational strategy to ameliorate autoimmune conditions. However, to date, no successful clinical results have been reported. We postulated that progress in these studies with PDE7 had been hampered by the lack of a potent ligand with a reasonable selectivity for this PDE isozyme. Therefore, starting from a PDE7A/7B dual inhibitor, our investigations led to improved selectivity along with extended metabolic stability, resulting in a novel PDE7A inhibitor <b>26</b>. This compound with high selectivity over the closest isozyme is an ideal chemical entity to unveil new pharmacological roles of PDE7A-dependent signaling, as exemplified by the <i>in vivo</i> antiosteoporotic effects.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"167-173"},"PeriodicalIF":3.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-25 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00562
Simone Giovannuzzi, Andrea Angeli, Paloma Begines, Marta Ferraroni, Alessio Nocentini, Claudiu T Supuran

The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting K I values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.6 μM). X-ray crystallographic studies were conducted to gain insights into their modes of binding to the target enzyme. These findings mark a significant advancement in the search for inhibitory chemotypes other than classical sulfonamides.

{"title":"Tetrazole Is a Novel Zinc Binder Chemotype for Carbonic Anhydrase Inhibition.","authors":"Simone Giovannuzzi, Andrea Angeli, Paloma Begines, Marta Ferraroni, Alessio Nocentini, Claudiu T Supuran","doi":"10.1021/acsmedchemlett.4c00562","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00562","url":null,"abstract":"<p><p>The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting <i>K</i> <sub>I</sub> values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.6 μM). X-ray crystallographic studies were conducted to gain insights into their modes of binding to the target enzyme. These findings mark a significant advancement in the search for inhibitory chemotypes other than classical sulfonamides.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"163-166"},"PeriodicalIF":3.5,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726385/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the Chemical Space of Reverse Fosmidomycin Analogs.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-23 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00501
Talea Knak, Sana Takada, Boris Illarionov, Violetta Krisilia, Lais Pessanha de Carvalho, Beate Lungerich, Yasumitsu Sakamoto, Stefan Höfmann, Adelbert Bacher, Rainer Kalscheuer, Jana Held, Markus Fischer, Nobutada Tanaka, Thomas Kurz

Multidrug-resistant pathogens pose a major threat to human health, necessitating the identification of new drug targets and lead compounds that are not susceptible to cross-resistance. This study demonstrates that novel reverse thia analogs of the phosphonohydroxamic acid antibiotic fosmidomycin inhibit 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme for Plasmodium falciparum, Escherichia coli, and Mycobacterium tuberculosis that is absent in humans. Some novel analogs with large α-phenyl substituents exhibited strong inhibition across these three DXR orthologues, surpassing the inhibitory activity of fosmidomycin. Despite nanomolar target inhibition, the new DXR inhibitors demonstrated mainly weak or no in vitro growth inhibition of the pathogens. Crystallographic studies revealed that compounds 12a and 12b induce an open PfDXR conformation and that the enzyme selectively binds the S-enantiomers. The study underscores the difficulties of achieving potent cellular activity despite strong DXR inhibition and emphasizes the need for novel structural optimization strategies and comprehensive pharmacokinetic studies.

{"title":"Expanding the Chemical Space of Reverse Fosmidomycin Analogs.","authors":"Talea Knak, Sana Takada, Boris Illarionov, Violetta Krisilia, Lais Pessanha de Carvalho, Beate Lungerich, Yasumitsu Sakamoto, Stefan Höfmann, Adelbert Bacher, Rainer Kalscheuer, Jana Held, Markus Fischer, Nobutada Tanaka, Thomas Kurz","doi":"10.1021/acsmedchemlett.4c00501","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00501","url":null,"abstract":"<p><p>Multidrug-resistant pathogens pose a major threat to human health, necessitating the identification of new drug targets and lead compounds that are not susceptible to cross-resistance. This study demonstrates that novel reverse thia analogs of the phosphonohydroxamic acid antibiotic fosmidomycin inhibit 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme for <i>Plasmodium falciparum</i>, <i>Escherichia coli</i>, and <i>Mycobacterium tuberculosis</i> that is absent in humans. Some novel analogs with large α-phenyl substituents exhibited strong inhibition across these three DXR orthologues, surpassing the inhibitory activity of fosmidomycin. Despite nanomolar target inhibition, the new DXR inhibitors demonstrated mainly weak or no <i>in vitro</i> growth inhibition of the pathogens. Crystallographic studies revealed that compounds <b>12a</b> and <b>12b</b> induce an open <i>Pf</i>DXR conformation and that the enzyme selectively binds the <i>S</i>-enantiomers. The study underscores the difficulties of achieving potent cellular activity despite strong DXR inhibition and emphasizes the need for novel structural optimization strategies and comprehensive pharmacokinetic studies.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"136-143"},"PeriodicalIF":3.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-23 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00460
Juan Pablo Cerutti, Lucas Abreu Diniz, Viviane Corrêa Santos, Salomé Catalina Vilchez Larrea, Guillermo Daniel Alonso, Rafaela Salgado Ferreira, Mario Alfredo Quevedo, Wim Dehaen

Cruzipain (CZP) is an essential cysteine protease of Trypanosoma cruzi, the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of SH-1, a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC50 = 28 nM) and null inhibition of human cathepsin L. SH-1 demonstrates bioactivity translation comparable to that of K777 (1-10 μM), a CZP inhibitor previously advanced to clinical trials. Experimental findings indicate that SH-1 forms a reversible covalent bond with Cys25 in CZP, while in silico and structure-activity relationship studies suggest that this interaction is guided by acid-base equilibrium dynamics. The potential of SH-1 for preclinical development is discussed alongside detailed structure-activity relationships for the further optimization of CZP inhibitors.

{"title":"Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain.","authors":"Juan Pablo Cerutti, Lucas Abreu Diniz, Viviane Corrêa Santos, Salomé Catalina Vilchez Larrea, Guillermo Daniel Alonso, Rafaela Salgado Ferreira, Mario Alfredo Quevedo, Wim Dehaen","doi":"10.1021/acsmedchemlett.4c00460","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00460","url":null,"abstract":"<p><p>Cruzipain (CZP) is an essential cysteine protease of <i>Trypanosoma cruzi</i>, the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of <b>SH-1</b>, a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC<sub>50</sub> = 28 nM) and null inhibition of human cathepsin L. <b>SH-1</b> demonstrates bioactivity translation comparable to that of K777 (1-10 μM), a CZP inhibitor previously advanced to clinical trials. Experimental findings indicate that <b>SH-1</b> forms a reversible covalent bond with Cys25 in CZP, while <i>in silico</i> and structure-activity relationship studies suggest that this interaction is guided by acid-base equilibrium dynamics. The potential of <b>SH-1</b> for preclinical development is discussed alongside detailed structure-activity relationships for the further optimization of CZP inhibitors.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"72-79"},"PeriodicalIF":3.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726379/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-Arylsulfonylated C-Homoaporphines as a New Class of Antiplatelet and Antimicrobial Agents.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-23 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00491
Bharti Rajesh Kumar Shyamlal, Amol T Mahajan, Vikash Kumar, Aarohi Gupta, Rishabh Shrivastava Ronin, Manas Mathur, Janmejaya Sen, Sandeep Chaudhary

A series of novel N-arylsulfonylated C-homoaporphine alkaloids were synthesized under microwave irradiation and evaluated for their in vitro antiplatelet and antimicrobial activities. Among the series, compounds 12a, 12c, 12e, 12f, 12h, 12j, 12k, 12m, and 12o demonstrated highly potent (∼3-fold) platelet aggregation inhibitory activity than acetylsalicylic acid (IC50 = 21.34 μg/mL). Several N-arylsulfonylated C-homoaporphines also exhibited promising antimicrobial activity against various strains, including Macrophoma phaseolina, Trichoderma reesei, and Aspergillus niger, with minimum inhibitory concentrations (MIC) of 12.5, 6.25, and 12.5 μg/mL, respectively, comparable to Ketoconazole [MIC = 12.5 μg/mL (MP and AN strain); 6.25 μg/mL (TR strain)]. 12h showed potent antibacterial activity (IC50 = 6.25 μg/mL against Escherichia coli and Bacillus subtilis) compared to Ampicillin (IC50 = 12.5 μg/mL). After thorough structure-activity relationship (SAR) and in silico studies, C-homoaporphines were identified as a novel class of antiplatelet and antimicrobial agents.

{"title":"N-Arylsulfonylated C-Homoaporphines as a New Class of Antiplatelet and Antimicrobial Agents.","authors":"Bharti Rajesh Kumar Shyamlal, Amol T Mahajan, Vikash Kumar, Aarohi Gupta, Rishabh Shrivastava Ronin, Manas Mathur, Janmejaya Sen, Sandeep Chaudhary","doi":"10.1021/acsmedchemlett.4c00491","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00491","url":null,"abstract":"<p><p>A series of novel N-arylsulfonylated C-homoaporphine alkaloids were synthesized under microwave irradiation and evaluated for their <i>in vitro</i> antiplatelet and antimicrobial activities. Among the series, compounds <b>12a</b>, <b>12c</b>, <b>12e</b>, <b>12f</b>, <b>12h</b>, <b>12j</b>, <b>12k</b>, <b>12m</b>, and <b>12o</b> demonstrated highly potent (∼3-fold) platelet aggregation inhibitory activity than acetylsalicylic acid (IC<sub>50</sub> = 21.34 μg/mL). Several N-arylsulfonylated C-homoaporphines also exhibited promising antimicrobial activity against various strains, including <i>Macrophoma phaseolina</i>, <i>Trichoderma reesei</i>, and <i>Aspergillus niger</i>, with minimum inhibitory concentrations (MIC) of 12.5, 6.25, and 12.5 μg/mL, respectively, comparable to Ketoconazole [MIC = 12.5 μg/mL (MP and AN strain); 6.25 μg/mL (TR strain)]. <b>12h</b> showed potent antibacterial activity (IC<sub>50</sub> = 6.25 μg/mL against <i>Escherichia coli</i> and <i>Bacillus subtilis</i>) compared to Ampicillin (IC<sub>50</sub> = 12.5 μg/mL). After thorough structure-activity relationship (SAR) and <i>in silico</i> studies, C-homoaporphines were identified as a novel class of antiplatelet and antimicrobial agents.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"116-125"},"PeriodicalIF":3.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Ergoline Compounds as 5-HT2A Agonists for Treating Mood Disorders Such as Depressive Disorders and Bipolar Disorders.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-20 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00593
Ram W Sabnis

Provided herein are novel ergoline compounds as 5-HT2A agonists, pharmaceutical compositions, use of such compounds in treating mood disorders such as depressive disorders and bipolar disorders, and processes for preparing such compounds.

{"title":"Novel Ergoline Compounds as 5-HT2A Agonists for Treating Mood Disorders Such as Depressive Disorders and Bipolar Disorders.","authors":"Ram W Sabnis","doi":"10.1021/acsmedchemlett.4c00593","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00593","url":null,"abstract":"<p><p>Provided herein are novel ergoline compounds as 5-HT2A agonists, pharmaceutical compositions, use of such compounds in treating mood disorders such as depressive disorders and bipolar disorders, and processes for preparing such compounds.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"32-33"},"PeriodicalIF":3.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of Novel Pyrimidine Derivatives as Human Pin1 Covalent Inhibitors.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-20 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00477
Meizhen Tian, Xiaoyu Wang, Guodong Tang, Guonan Cui, Jie Zhou, Jing Jin, Bailing Xu

Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is a unique peptidyl-prolyl isomerase (PPIase), and inactivation of Pin1 with a covalent inhibitor is a potential strategy for developing anticancer agents. Herein, a series of sulfolane amino-substituted 2-chloro-5-nitropyrimidine derivatives were disclosed as structurally distinct covalent inhibitors toward Pin1, which were validated for their covalent binding to Cys113 of Pin1 by X-ray cocrystal structures of compounds 4a (IC50 = 11.55 μM) and 6a (IC50 = 3.15 μM). This work provided a new approach for covalent inhibition of Pin1 by taking advantage of the 2-chloro-5-nitropyrimidine as the electrophilic warhead, which might benefit the discovery of potent and drug-like Pin1 inhibitors.

{"title":"Discovery of Novel Pyrimidine Derivatives as Human Pin1 Covalent Inhibitors.","authors":"Meizhen Tian, Xiaoyu Wang, Guodong Tang, Guonan Cui, Jie Zhou, Jing Jin, Bailing Xu","doi":"10.1021/acsmedchemlett.4c00477","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00477","url":null,"abstract":"<p><p>Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is a unique peptidyl-prolyl isomerase (PPIase), and inactivation of Pin1 with a covalent inhibitor is a potential strategy for developing anticancer agents. Herein, a series of sulfolane amino-substituted 2-chloro-5-nitropyrimidine derivatives were disclosed as structurally distinct covalent inhibitors toward Pin1, which were validated for their covalent binding to Cys113 of Pin1 by X-ray cocrystal structures of compounds <b>4a</b> (IC<sub>50</sub> = 11.55 μM) and <b>6a</b> (IC<sub>50</sub> = 3.15 μM). This work provided a new approach for covalent inhibition of Pin1 by taking advantage of the 2-chloro-5-nitropyrimidine as the electrophilic warhead, which might benefit the discovery of potent and drug-like Pin1 inhibitors.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"101-108"},"PeriodicalIF":3.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Re-evaluation of Cyclic Peptide Binding to Neurotensin Receptor 1 by Shifting the Peptide Register during Synthesis.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-19 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00542
Lazarus Andrew de Zhang, Mengjie Liu, Daniel J Scott, David K Chalmers

The head-to-tail cyclic peptide cyclo[Arg-Lys-Pro-Tyr-Tle-Leu] (peptide 1, where Tle is l-tert-Leu) has previously been reported to bind to neurotensin receptor 1 (NTS1) (pKi = 5.97). Upon seeking to reproduce this finding, we found that peptide 1 did not have a measurable affinity for NTS1. However, a semipurified preparation of peptide 1 appeared to bind to NTS1 with pKi = 5.83 ± 0.25 SEM. Resynthesis of peptide 1 using a shifted peptide register gave linear and cyclic forms of peptide 1 that were both unable to bind to NTS1. We observe that the previously reported activity of peptide 1 may be due to the presence of high affinity linear contaminants. Approximately 3% contamination with the linear variant would explain the apparent binding of the semipure peptide 1 sample. From this study, we propose that shifting the peptide register during synthesis as a strategy to minimize the presence of potent precursor contaminants.

{"title":"Re-evaluation of Cyclic Peptide Binding to Neurotensin Receptor 1 by Shifting the Peptide Register during Synthesis.","authors":"Lazarus Andrew de Zhang, Mengjie Liu, Daniel J Scott, David K Chalmers","doi":"10.1021/acsmedchemlett.4c00542","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00542","url":null,"abstract":"<p><p>The head-to-tail cyclic peptide <i>cyclo</i>[Arg-Lys-Pro-Tyr-Tle-Leu] (peptide <b>1</b>, where Tle is l-<i>tert</i>-Leu) has previously been reported to bind to neurotensin receptor 1 (NTS1) (pKi = 5.97). Upon seeking to reproduce this finding, we found that peptide <b>1</b> did not have a measurable affinity for NTS1. However, a semipurified preparation of peptide <b>1</b> appeared to bind to NTS1 with pKi = 5.83 ± 0.25 SEM. Resynthesis of peptide <b>1</b> using a shifted peptide register gave linear and cyclic forms of peptide <b>1</b> that were both unable to bind to NTS1. We observe that the previously reported activity of peptide <b>1</b> may be due to the presence of high affinity linear contaminants. Approximately 3% contamination with the linear variant would explain the apparent binding of the semipure peptide <b>1</b> sample. From this study, we propose that shifting the peptide register during synthesis as a strategy to minimize the presence of potent precursor contaminants.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"157-162"},"PeriodicalIF":3.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726378/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure-Based Design of Novel TLR7/8 Agonist Payloads Enabling an Immunomodulatory Conjugate Approach.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-19 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00463
Yam B Poudel, Julian C Lo, Derek J Norris, Matthew Cox, Liqi He, Walter L Johnson, Murugaiah A M Subbaiah, Santigopal Mondal, Soodamani Thangavel, Lakshumanan Subramani, Maheswara Reddy, Suraksha Jain, Dahlia R Weiss, Prasanna Sivaprakasam, David Critton, Dawn Mulligan, Chunshan Xie, Payal Dhar, Yvonne Li, Emanuela Sega, Sayumi Yamazoe, Ashvinikumar V Gavai, Arvind Mathur, Christoph W Zapf, Eugene P Chekler

Dual activation of the TLR7 and TLR8 pathways leads to the production of type I interferon and proinflammatory cytokines, resulting in efficient antigen presentation by dendritic cells to promote T-cell priming and antitumor immunity. We developed a novel series of TLR7/8 dual agonists with varying ratios of TLR7 and TLR8 activity for use as payloads for an antibody-drug conjugate approach. The agonist-induced production of several cytokines in human whole blood confirmed their functional activity. Structure-activity relationship studies guided by structure-based drug design are described.

{"title":"Structure-Based Design of Novel TLR7/8 Agonist Payloads Enabling an Immunomodulatory Conjugate Approach.","authors":"Yam B Poudel, Julian C Lo, Derek J Norris, Matthew Cox, Liqi He, Walter L Johnson, Murugaiah A M Subbaiah, Santigopal Mondal, Soodamani Thangavel, Lakshumanan Subramani, Maheswara Reddy, Suraksha Jain, Dahlia R Weiss, Prasanna Sivaprakasam, David Critton, Dawn Mulligan, Chunshan Xie, Payal Dhar, Yvonne Li, Emanuela Sega, Sayumi Yamazoe, Ashvinikumar V Gavai, Arvind Mathur, Christoph W Zapf, Eugene P Chekler","doi":"10.1021/acsmedchemlett.4c00463","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00463","url":null,"abstract":"<p><p>Dual activation of the TLR7 and TLR8 pathways leads to the production of type I interferon and proinflammatory cytokines, resulting in efficient antigen presentation by dendritic cells to promote T-cell priming and antitumor immunity. We developed a novel series of TLR7/8 dual agonists with varying ratios of TLR7 and TLR8 activity for use as payloads for an antibody-drug conjugate approach. The agonist-induced production of several cytokines in human whole blood confirmed their functional activity. Structure-activity relationship studies guided by structure-based drug design are described.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"80-88"},"PeriodicalIF":3.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Psychoactive Alkaloid Delivery, Ergoline Analogues, and Serotonin Receptor Modulation for Enhanced Therapeutic Outcomes.
IF 3.5 3区 医学 Q2 CHEMISTRY, MEDICINAL Pub Date : 2024-12-18 eCollection Date: 2025-01-09 DOI: 10.1021/acsmedchemlett.4c00586
Robert B Kargbo

Recent advancements in pharmaceutical research have focused on developing novel psychoactive compounds and receptor modulators that enhance therapeutic outcomes while minimizing adverse effects. This Patent Highlight examines three innovative approaches: (1) transmucosal delivery of dephosphorylated psychoactive alkaloids, (2) nonhallucinogenic serotonin receptor modulators, and (3) ergoline analogues designed for treating neurological disorders. These innovations offer breakthroughs in drug delivery, receptor targeting, and structural modifications, aiming to address challenges in the treatment of mood disorders, neurological diseases, and chronic pain while improving bioavailability and reducing side effects and hallucinogenic properties.

{"title":"Advances in Psychoactive Alkaloid Delivery, Ergoline Analogues, and Serotonin Receptor Modulation for Enhanced Therapeutic Outcomes.","authors":"Robert B Kargbo","doi":"10.1021/acsmedchemlett.4c00586","DOIUrl":"https://doi.org/10.1021/acsmedchemlett.4c00586","url":null,"abstract":"<p><p>Recent advancements in pharmaceutical research have focused on developing novel psychoactive compounds and receptor modulators that enhance therapeutic outcomes while minimizing adverse effects. This Patent Highlight examines three innovative approaches: (1) transmucosal delivery of dephosphorylated psychoactive alkaloids, (2) nonhallucinogenic serotonin receptor modulators, and (3) ergoline analogues designed for treating neurological disorders. These innovations offer breakthroughs in drug delivery, receptor targeting, and structural modifications, aiming to address challenges in the treatment of mood disorders, neurological diseases, and chronic pain while improving bioavailability and reducing side effects and hallucinogenic properties.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 1","pages":"26-28"},"PeriodicalIF":3.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Medicinal Chemistry Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1