Sustainability of shear stress conditioning in endothelial colony-forming cells compared to human aortic endothelial cells to underline suitability for tissue-engineered vascular grafts
Jannis Renzelmann, Sebastian Heene, Rebecca Jonczyk, Jana Krüger, Suhayla Alnajjar, Cornelia Blume
{"title":"Sustainability of shear stress conditioning in endothelial colony-forming cells compared to human aortic endothelial cells to underline suitability for tissue-engineered vascular grafts","authors":"Jannis Renzelmann, Sebastian Heene, Rebecca Jonczyk, Jana Krüger, Suhayla Alnajjar, Cornelia Blume","doi":"10.1016/j.mvr.2024.104746","DOIUrl":null,"url":null,"abstract":"<div><p>The endothelialization of cardiovascular implants is supposed to improve the long-term patency of these implants. In addition, in previous studies, it has been shown, that the conditioning of endothelial cells by dynamic cultivation leads to the expression of an anti-thrombogenic phenotype. For the creation of a tissue-engineered vascular graft (TEVG), these two strategies were combined to achieve optimal hemocompatibility. In a clinical setup, this would require the transfer of the already endothelialized construct from the conditioning bioreactor to the patient. Therefore, the reversibility of the dynamic conditioning of the endothelial cells with arterial-like high shear stress (20 dyn/cm<sup>2</sup>) was investigated to define the timeframe (tested in a range of up to 24 h) for the perseverance of dynamically induced phenotypical changes. Two types of endothelial cells were compared: endothelial colony-forming cells (ECFCs) and human aortic endothelial cells (HAECs). The results showed that ECFCs respond far more sensitively and rapidly to flow than HAECs. The resulting cell alignment and increased protein expression of KLF-2, Notch-4, Thrombomodulin, Tie2 and eNOS monomer was paralleled by increased eNOS and unaltered KLF-2 mRNA levels even under stopped-flow conditions. VCAM-1 mRNA and protein expression was downregulated under flow and did not recover under stopped flow. From these time kinetic results, we concluded, that the maximum time gap between the TEVG cultivated with autologous ECFCs in future reactor cultivations and the transfer to the potential TEVG recipient should be limited to ∼6 h.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"157 ","pages":"Article 104746"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0026286224000955/pdfft?md5=fee775efdfe2befebd14889481e9b1b5&pid=1-s2.0-S0026286224000955-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microvascular research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026286224000955","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
The endothelialization of cardiovascular implants is supposed to improve the long-term patency of these implants. In addition, in previous studies, it has been shown, that the conditioning of endothelial cells by dynamic cultivation leads to the expression of an anti-thrombogenic phenotype. For the creation of a tissue-engineered vascular graft (TEVG), these two strategies were combined to achieve optimal hemocompatibility. In a clinical setup, this would require the transfer of the already endothelialized construct from the conditioning bioreactor to the patient. Therefore, the reversibility of the dynamic conditioning of the endothelial cells with arterial-like high shear stress (20 dyn/cm2) was investigated to define the timeframe (tested in a range of up to 24 h) for the perseverance of dynamically induced phenotypical changes. Two types of endothelial cells were compared: endothelial colony-forming cells (ECFCs) and human aortic endothelial cells (HAECs). The results showed that ECFCs respond far more sensitively and rapidly to flow than HAECs. The resulting cell alignment and increased protein expression of KLF-2, Notch-4, Thrombomodulin, Tie2 and eNOS monomer was paralleled by increased eNOS and unaltered KLF-2 mRNA levels even under stopped-flow conditions. VCAM-1 mRNA and protein expression was downregulated under flow and did not recover under stopped flow. From these time kinetic results, we concluded, that the maximum time gap between the TEVG cultivated with autologous ECFCs in future reactor cultivations and the transfer to the potential TEVG recipient should be limited to ∼6 h.
期刊介绍:
Microvascular Research is dedicated to the dissemination of fundamental information related to the microvascular field. Full-length articles presenting the results of original research and brief communications are featured.
Research Areas include:
• Angiogenesis
• Biochemistry
• Bioengineering
• Biomathematics
• Biophysics
• Cancer
• Circulatory homeostasis
• Comparative physiology
• Drug delivery
• Neuropharmacology
• Microvascular pathology
• Rheology
• Tissue Engineering.