Sediment microbial fuel cells capable of powering outdoor environmental monitoring sensors

IF 5.4 Q1 CHEMISTRY, ANALYTICAL Sensing and Bio-Sensing Research Pub Date : 2024-09-17 DOI:10.1016/j.sbsr.2024.100695
{"title":"Sediment microbial fuel cells capable of powering outdoor environmental monitoring sensors","authors":"","doi":"10.1016/j.sbsr.2024.100695","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, Sediment Microbial Fuel Cells (SMFCs) prototypes have been developed to operate under open-air conditions and power sensors for environmental monitoring. Two SMFCs with a volume of 50 l each, consisting of two types of anodic materials – graphite and coke, were operated on-field for over a year. The electrical outputs have been recorded and compared with the measured environmental parameters such as temperature, light illumination, atmospheric pressure, humidity, etc. The statistical analysis of the obtained data shows that temperature changes between 0 and 14 °C do not affect the power achieved. On the contrary, the sunlight irradiation showed a second-order polynomial correlation with the current generated by the SMFCs, increasing the latter during the days. The cathode reactions significantly impacted the power density achieved by both explored SMFCs and the system's sustainability. The metallurgical coke is suggested to be used as an inexpensive and convenient anode material for SMFCs giving compatible results to the widely used graphite.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000771/pdfft?md5=3a17b815f27cdcfc792216ddf48478e1&pid=1-s2.0-S2214180424000771-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, Sediment Microbial Fuel Cells (SMFCs) prototypes have been developed to operate under open-air conditions and power sensors for environmental monitoring. Two SMFCs with a volume of 50 l each, consisting of two types of anodic materials – graphite and coke, were operated on-field for over a year. The electrical outputs have been recorded and compared with the measured environmental parameters such as temperature, light illumination, atmospheric pressure, humidity, etc. The statistical analysis of the obtained data shows that temperature changes between 0 and 14 °C do not affect the power achieved. On the contrary, the sunlight irradiation showed a second-order polynomial correlation with the current generated by the SMFCs, increasing the latter during the days. The cathode reactions significantly impacted the power density achieved by both explored SMFCs and the system's sustainability. The metallurgical coke is suggested to be used as an inexpensive and convenient anode material for SMFCs giving compatible results to the widely used graphite.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能够为室外环境监测传感器供电的沉积物微生物燃料电池
本研究开发了沉积物微生物燃料电池(SMFC)原型,可在露天条件下运行,并为环境监测传感器供电。两个体积各为 50 升的 SMFC 由石墨和焦炭两种阳极材料组成,在现场运行了一年多。电输出已被记录下来,并与温度、光照、大气压力、湿度等测量环境参数进行了比较。对所获数据的统计分析显示,0 至 14 °C 之间的温度变化不会影响所实现的功率。相反,太阳光辐照与 SMFC 产生的电流呈二阶多项式关系,后者在日间不断增加。阴极反应对所探索的 SMFC 达到的功率密度和系统的可持续性都有很大影响。建议将冶金焦炭用作 SMFC 的廉价且方便的阳极材料,其结果与广泛使用的石墨相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
期刊最新文献
Analysis of plant physiological responses based on leaf color changes through the development and application of a wireless plant sensor Computational and experimental study of AC measurements performed by a double-nanohole plasmonic nanopore sensor on 20 nm silica nanoparticles An innovative eco-friendly optical sensor designed specifically to detect gallium ions in environmental samples Universal strategy for rapid design and analysis of gas detection peptide chips with positional preference Sediment microbial fuel cells capable of powering outdoor environmental monitoring sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1