Michele Pagone , Giordana Bucchioni , Francesco Alfino , Carlo Novara
{"title":"Autonomous Lunar rendezvous trajectory planning and control using nonlinear MPC and Pontryagin’s principle","authors":"Michele Pagone , Giordana Bucchioni , Francesco Alfino , Carlo Novara","doi":"10.1016/j.ifacsc.2024.100282","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the application of Nonlinear Model Predictive Control (NMPC) techniques, based on the Pontryagin Minimum Principle, for a minimum-propellant autonomous rendezvous maneuver in non-Keplerian Lunar orbits. The relative motion between the chaser and the target is described by the nonlinear dynamics of the circular restricted three body-problem, posing unique challenges due to the complex and unstable dynamics of near-rectilinear halo orbits. Key aspects of the proposed NMPC include trajectory optimization, maneuver planning, and real-time control, leveraging on its ability to satisfy complex mission requirements while ensuring safe and efficient spacecraft operations and in the presence of input and nonlinear/non-convex state constraints. The proposed formulation allows the design of a minimum-propellant controller, whose optimal control signal results to be bang–bang in time. A case study based on the Artemis III mission – where the docking of the Orion spacecraft to the Gateway station is planned – is illustrated in order to demonstrate the efficiency of the proposed approach, showcasing its potential for enhancing target tracking accuracy, while reducing propellant consumption.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"30 ","pages":"Article 100282"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the application of Nonlinear Model Predictive Control (NMPC) techniques, based on the Pontryagin Minimum Principle, for a minimum-propellant autonomous rendezvous maneuver in non-Keplerian Lunar orbits. The relative motion between the chaser and the target is described by the nonlinear dynamics of the circular restricted three body-problem, posing unique challenges due to the complex and unstable dynamics of near-rectilinear halo orbits. Key aspects of the proposed NMPC include trajectory optimization, maneuver planning, and real-time control, leveraging on its ability to satisfy complex mission requirements while ensuring safe and efficient spacecraft operations and in the presence of input and nonlinear/non-convex state constraints. The proposed formulation allows the design of a minimum-propellant controller, whose optimal control signal results to be bang–bang in time. A case study based on the Artemis III mission – where the docking of the Orion spacecraft to the Gateway station is planned – is illustrated in order to demonstrate the efficiency of the proposed approach, showcasing its potential for enhancing target tracking accuracy, while reducing propellant consumption.