Assessment of polylactide as optical material

Q2 Engineering Optical Materials: X Pub Date : 2024-09-14 DOI:10.1016/j.omx.2024.100360
Matthias Balthasar Kesting , Jörg Meyer , Gunnar Seide
{"title":"Assessment of polylactide as optical material","authors":"Matthias Balthasar Kesting ,&nbsp;Jörg Meyer ,&nbsp;Gunnar Seide","doi":"10.1016/j.omx.2024.100360","DOIUrl":null,"url":null,"abstract":"<div><p>Due to growing concerns considering environmental pollution, interest in bioplastics is rising. For technical applications, the respective materials have to meet high requirements. In optical applications these include transmittance, refractive index and dispersion but also dimensional stability, resistance against thermal influences and radiation induced degradation. Polylactide (PLA), a bio-based and biodegradable polymer, is already applied in high tech applications such as bioresorbable implants. The material shows favorable optical properties in its glassy state and excellent resistance against photodegradation. However, the application of PLA is hindered by its crystallization behavior. When exposed to temperatures above 55–60 °C it turns hazy. This might be avoided by hindering crystallization or tailoring crystal morphology. In this critical review, current applications of PLA are discussed and its broad use is shown. A literature search is carried out considering fully bio-based and biodegradable plastics for optical applications. The results show that currently no material is commercially available that meets all requirements set. Finally, an overview of the current state in research is provided, considering PLA-based materials with adapted crystallization behavior under the aspect of transparency. This includes use of additives, formulation of blends and material treatments. Finally, recommendations for the goal of achieving highly sustainable PLA-based optical components are given.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"24 ","pages":"Article 100360"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259014782400072X/pdfft?md5=564c289071e8260d58e93b008bfb9d6c&pid=1-s2.0-S259014782400072X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259014782400072X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Due to growing concerns considering environmental pollution, interest in bioplastics is rising. For technical applications, the respective materials have to meet high requirements. In optical applications these include transmittance, refractive index and dispersion but also dimensional stability, resistance against thermal influences and radiation induced degradation. Polylactide (PLA), a bio-based and biodegradable polymer, is already applied in high tech applications such as bioresorbable implants. The material shows favorable optical properties in its glassy state and excellent resistance against photodegradation. However, the application of PLA is hindered by its crystallization behavior. When exposed to temperatures above 55–60 °C it turns hazy. This might be avoided by hindering crystallization or tailoring crystal morphology. In this critical review, current applications of PLA are discussed and its broad use is shown. A literature search is carried out considering fully bio-based and biodegradable plastics for optical applications. The results show that currently no material is commercially available that meets all requirements set. Finally, an overview of the current state in research is provided, considering PLA-based materials with adapted crystallization behavior under the aspect of transparency. This includes use of additives, formulation of blends and material treatments. Finally, recommendations for the goal of achieving highly sustainable PLA-based optical components are given.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估作为光学材料的聚乳酸
由于人们越来越关注环境污染问题,对生物塑料的兴趣也日益高涨。对于技术应用而言,相关材料必须满足很高的要求。在光学应用中,这些要求包括透光率、折射率和色散,以及尺寸稳定性、抗热影响和抗辐射降解性。聚乳酸(PLA)是一种生物基可生物降解聚合物,已被应用于高科技领域,如生物可吸收植入物。这种材料在玻璃态时具有良好的光学特性,并具有优异的抗光降解性能。然而,聚乳酸的结晶行为阻碍了它的应用。当暴露在 55-60 °C 以上的温度下时,聚乳酸会变得混浊。可以通过阻碍结晶或调整晶体形态来避免这种情况。本评论对聚乳酸的当前应用进行了讨论,并展示了其广泛的用途。文献搜索考虑了光学应用中的全生物基塑料和生物降解塑料。结果表明,目前市面上还没有一种材料能满足所有要求。最后,综述了目前的研究状况,考虑了在透明度方面具有适应结晶行为的聚乳酸基材料。这包括添加剂的使用、混合配方和材料处理。最后,为实现高度可持续的聚乳酸基光学元件的目标提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Materials: X
Optical Materials: X Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
73
审稿时长
91 days
期刊最新文献
The effect of temperature factor during heavy ion irradiation on structural disordering of SiC ceramics Luminescence of copper-doped α-quartz crystal after oxygen treatment Synthesis and optical properties of LaSrGaO4:RE3+ (RE = Sm, Eu, Ho) single crystals via optical float zone method Optical and EPR study of Mn4+ ions in different crystal environments in Mn, Li co-doped MgO Modulation of spectroscopic properties in the YXO4 compounds (where X = V5+, P5+, As5+) doped with Eu3+ ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1