Piecewise Affine Relaxation of Discrete Value Functions in Learning Model Predictive Control With Application to Autonomous Racing

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-09-05 DOI:10.1109/LCSYS.2024.3455174
Eunhyek Joa;Changhee Kim;Donghoon Shin;Seunghoon Woo
{"title":"Piecewise Affine Relaxation of Discrete Value Functions in Learning Model Predictive Control With Application to Autonomous Racing","authors":"Eunhyek Joa;Changhee Kim;Donghoon Shin;Seunghoon Woo","doi":"10.1109/LCSYS.2024.3455174","DOIUrl":null,"url":null,"abstract":"Learning Model Predictive Control (LMPC) is a data-driven approach to MPC that enhances closed-loop performance by leveraging data from successive task iterations to approximate the solution of optimal control problems. The value function in LMPC is pivotal for performance enhancement, but its discrete nature-where each point corresponds to a data point-renders the LMPC problem computationally intensive due to its mixed-integer nature. This letter introduces a novel method to construct the LMPC value function. The proposed value function is a piecewise affine approximation that interpolates the discrete data points of the original value function, resulting in a nonlinear relaxation of the mixed-integer LMPC problem. By connecting the discrete data points with piecewise affine segments, the essential characteristics of the original value function are preserved. The proposed algorithm’s effectiveness is demonstrated through numerical simulations in autonomous racing.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666876/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Learning Model Predictive Control (LMPC) is a data-driven approach to MPC that enhances closed-loop performance by leveraging data from successive task iterations to approximate the solution of optimal control problems. The value function in LMPC is pivotal for performance enhancement, but its discrete nature-where each point corresponds to a data point-renders the LMPC problem computationally intensive due to its mixed-integer nature. This letter introduces a novel method to construct the LMPC value function. The proposed value function is a piecewise affine approximation that interpolates the discrete data points of the original value function, resulting in a nonlinear relaxation of the mixed-integer LMPC problem. By connecting the discrete data points with piecewise affine segments, the essential characteristics of the original value function are preserved. The proposed algorithm’s effectiveness is demonstrated through numerical simulations in autonomous racing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习模型预测控制中离散值函数的片式仿射松弛在自主赛车中的应用
学习模型预测控制(Learning Model Predictive Control,LMPC)是一种数据驱动的 MPC 方法,通过利用连续任务迭代的数据来近似求解最优控制问题,从而提高闭环性能。LMPC 中的值函数对性能提升至关重要,但由于其离散性,即每个点对应一个数据点,使得 LMPC 问题具有混合整数的计算密集性。本文介绍了一种构建 LMPC 值函数的新方法。所提出的值函数是一种片断仿射近似值,它对原始值函数的离散数据点进行插值,从而实现了对混合整数 LMPC 问题的非线性放松。通过用片断仿射线段连接离散数据点,保留了原始值函数的基本特征。通过在自主赛车中进行数值模拟,证明了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Rationality of Learning Algorithms in Repeated Normal-Form Games Impact of Opinion on Disease Transmission With Waterborne Pathogen and Stubborn Community Numerical and Lyapunov-Based Investigation of the Effect of Stenosis on Blood Transport Stability Using a Control-Theoretic PDE Model of Cardiovascular Flow Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm Opinion Dynamics With Set-Based Confidence: Convergence Criteria and Periodic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1