{"title":"Unitary Root-MUSIC Method With Nystrom Approximation for 3-D Sparse Array DOA Estimation in Sensor Networks","authors":"Veerendra D;Miguel Villagomez-Galindo;Ana Beatriz Martínez Valencia;Niranjan KR;Arora Jasmineet Kaur;Upendra Kumar Potnuru;Jasgurpreet Singh Chohan;Bade Venkata Suresh;Sudhanshu Maurya","doi":"10.1109/LSENS.2024.3451723","DOIUrl":null,"url":null,"abstract":"This letter addresses the challenge of efficient direction of arrival (DOA) estimation in 3-D sparse arrays, crucial for applications, such as radar and wireless communication systems. We introduce a novel methodology that combines the Nystrom approximation with the unitary root-multiple signal classification (MUSIC) algorithm to precisely estimate DOAs while significantly reducing computational complexity. Our approach strategically selects a subset of sensors using the Nystrom approximation, resulting in a notable decrease in simulation time compared to conventional methods, such as Root-MUSIC and MR-ESPRIT. Extensive simulations validate the efficacy of our method, demonstrating a reduction of up to 39% in simulation time with a sensor subset size of 20. This technique, which enhances efficiency, has the potential to transform DOA estimation in 3-D sparse arrays, making it suitable for real-world applications that demand rapid and accurate signal processing.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659128/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter addresses the challenge of efficient direction of arrival (DOA) estimation in 3-D sparse arrays, crucial for applications, such as radar and wireless communication systems. We introduce a novel methodology that combines the Nystrom approximation with the unitary root-multiple signal classification (MUSIC) algorithm to precisely estimate DOAs while significantly reducing computational complexity. Our approach strategically selects a subset of sensors using the Nystrom approximation, resulting in a notable decrease in simulation time compared to conventional methods, such as Root-MUSIC and MR-ESPRIT. Extensive simulations validate the efficacy of our method, demonstrating a reduction of up to 39% in simulation time with a sensor subset size of 20. This technique, which enhances efficiency, has the potential to transform DOA estimation in 3-D sparse arrays, making it suitable for real-world applications that demand rapid and accurate signal processing.