Sierra George, Connor Waldron, Christina Thompson, Zhiming Ouyang
{"title":"Analysis of bb0556 Expression and Its Role During Borrelia burgdorferi Mammalian Infection","authors":"Sierra George, Connor Waldron, Christina Thompson, Zhiming Ouyang","doi":"10.1111/mmi.15319","DOIUrl":null,"url":null,"abstract":"In <i>Borrelia burgdorferi</i>, BB0556 was annotated as a conserved hypothetical protein. We herein investigated gene expression and the importance of this protein during infection. Our data support that <i>bb0556</i> forms an operon with five other genes. A transcriptional start site and the associated σ<sup>70</sup>-type promoter were identified in the sequences upstream of <i>bb0554</i>, and luciferase reporter assays indicated that this promoter is functional in <i>B. burgdorferi</i>. Furthermore, the sequences upstream of <i>bb0556</i> contain an internal promoter to drive gene expression. <i>bb0556</i> expression was affected by various environmental factors such as changes in temperature, pH, and cell density when <i>B. burgdorferi</i> was grown in vitro. Surprisingly, significant differences were observed for <i>bb0556</i> expression between <i>B. burgdorferi</i> strains B31-A3 and CE162, likely due to the different <i>cis-</i> and <i>trans</i>-acting factors in these strains. Moreover, <i>bb0556</i> was found to be highly expressed by <i>B. burgdorferi</i> in infected mice tissues, suggesting that this gene plays an important role during animal infection. To test this hypothesis, we generated a <i>bb0556</i> deletion mutant in a virulent bioluminescent <i>B. burgdorferi</i> strain. The mutant grew normally in the medium and displayed no defect in the resistance to environmental stresses such as reactive oxygen species, reactive nitrogen species, and osmotic stress. However, when the infectivity was compared between the mutant and its parental strain using in vivo bioluminescence imaging as well as analyses of spirochete recovery and bacterial burdens in animal tissues, our data showed that, contrary to the parental strain, the mutant was unable to infect mice. Complementation of <i>bb0556</i> in <i>cis</i> fully restored the infectious phenotype to wild-type levels. Taken together, our study demonstrates that the hypothetical protein BB0556 is a novel virulence factor essential for <i>B. burgdorferi</i> mammalian infection.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"11 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15319","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In Borrelia burgdorferi, BB0556 was annotated as a conserved hypothetical protein. We herein investigated gene expression and the importance of this protein during infection. Our data support that bb0556 forms an operon with five other genes. A transcriptional start site and the associated σ70-type promoter were identified in the sequences upstream of bb0554, and luciferase reporter assays indicated that this promoter is functional in B. burgdorferi. Furthermore, the sequences upstream of bb0556 contain an internal promoter to drive gene expression. bb0556 expression was affected by various environmental factors such as changes in temperature, pH, and cell density when B. burgdorferi was grown in vitro. Surprisingly, significant differences were observed for bb0556 expression between B. burgdorferi strains B31-A3 and CE162, likely due to the different cis- and trans-acting factors in these strains. Moreover, bb0556 was found to be highly expressed by B. burgdorferi in infected mice tissues, suggesting that this gene plays an important role during animal infection. To test this hypothesis, we generated a bb0556 deletion mutant in a virulent bioluminescent B. burgdorferi strain. The mutant grew normally in the medium and displayed no defect in the resistance to environmental stresses such as reactive oxygen species, reactive nitrogen species, and osmotic stress. However, when the infectivity was compared between the mutant and its parental strain using in vivo bioluminescence imaging as well as analyses of spirochete recovery and bacterial burdens in animal tissues, our data showed that, contrary to the parental strain, the mutant was unable to infect mice. Complementation of bb0556 in cis fully restored the infectious phenotype to wild-type levels. Taken together, our study demonstrates that the hypothetical protein BB0556 is a novel virulence factor essential for B. burgdorferi mammalian infection.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.