{"title":"Automatic assessment of concrete cracks in low-light, overexposed, and blurred images restored using a generative AI approach","authors":"Pengwei Guo , Xiangjun Meng , Weina Meng , Yi Bao","doi":"10.1016/j.autcon.2024.105787","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning-based computer vision techniques have high efficiency in assessing concrete cracks from images, and the assessment can be automated using robots for higher efficiency. However, assessment accuracy is often compromised by low-quality images. This paper presents a Conditional Generative Adversarial Network (CGAN)-based approach to restore low-light, overexposed, and blurred images. The approach integrates attention mechanisms and residual learning and uses Wasserstein loss with gradient penalty. Crack assessment results show that the proposed approach outperforms state-of-the-art methods, regarding structural similarity (SSIM: 0.78 for deblurring, 0.95 for low-light enhancement, and 0.96 for overexposure correction) and peak signal-to-noise ratio (PSNR: 28.6 for deblurring, 31.4 for low-light enhancement, and 31.6 for overexposure correction). Restored images have been used to train a deep learning model for assessing concrete cracks. The Intersection over Union (IoU) and F1 score of crack segmentation are higher than 0.98 and 0.99, respectively, revealing high accuracy in crack assessment tasks.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105787"},"PeriodicalIF":9.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005235","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning-based computer vision techniques have high efficiency in assessing concrete cracks from images, and the assessment can be automated using robots for higher efficiency. However, assessment accuracy is often compromised by low-quality images. This paper presents a Conditional Generative Adversarial Network (CGAN)-based approach to restore low-light, overexposed, and blurred images. The approach integrates attention mechanisms and residual learning and uses Wasserstein loss with gradient penalty. Crack assessment results show that the proposed approach outperforms state-of-the-art methods, regarding structural similarity (SSIM: 0.78 for deblurring, 0.95 for low-light enhancement, and 0.96 for overexposure correction) and peak signal-to-noise ratio (PSNR: 28.6 for deblurring, 31.4 for low-light enhancement, and 31.6 for overexposure correction). Restored images have been used to train a deep learning model for assessing concrete cracks. The Intersection over Union (IoU) and F1 score of crack segmentation are higher than 0.98 and 0.99, respectively, revealing high accuracy in crack assessment tasks.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.