首页 > 最新文献

Automation in Construction最新文献

英文 中文
Knowledge-augmented multi-modal data fusion and reasoning for automated crane lift monitoring 基于知识增强的多模态数据融合与推理的自动起重机升力监测
IF 10.3 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-02-07 DOI: 10.1016/j.autcon.2026.106822
Junlin Wang, Songbo Hu, Yihai Fang, Hongling Guo
{"title":"Knowledge-augmented multi-modal data fusion and reasoning for automated crane lift monitoring","authors":"Junlin Wang, Songbo Hu, Yihai Fang, Hongling Guo","doi":"10.1016/j.autcon.2026.106822","DOIUrl":"https://doi.org/10.1016/j.autcon.2026.106822","url":null,"abstract":"","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"3 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributed acoustic sensing-based real-time monitoring of far-field cracks in reinforced concrete bridge decks 基于分布式声传感的钢筋混凝土桥面远场裂缝实时监测
IF 10.3 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-02-06 DOI: 10.1016/j.autcon.2026.106821
Yao Wang, Yi Bao
{"title":"Distributed acoustic sensing-based real-time monitoring of far-field cracks in reinforced concrete bridge decks","authors":"Yao Wang, Yi Bao","doi":"10.1016/j.autcon.2026.106821","DOIUrl":"https://doi.org/10.1016/j.autcon.2026.106821","url":null,"abstract":"","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"1 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusing enhanced YOLO and knowledge graph-based large language models for automatic risk perception in tower crane operations 融合增强的YOLO和基于知识图的大型语言模型进行塔机作业风险自动感知
IF 10.3 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-02-05 DOI: 10.1016/j.autcon.2026.106823
Lingxiao Wang, Jingfeng Yuan, Shu Su, Hongxing Ding, Yu Bai, Miroslaw J. Skibniewski
{"title":"Fusing enhanced YOLO and knowledge graph-based large language models for automatic risk perception in tower crane operations","authors":"Lingxiao Wang, Jingfeng Yuan, Shu Su, Hongxing Ding, Yu Bai, Miroslaw J. Skibniewski","doi":"10.1016/j.autcon.2026.106823","DOIUrl":"https://doi.org/10.1016/j.autcon.2026.106823","url":null,"abstract":"","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"42 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146134693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph-driven embedding reinforcement and traceable LLM agent for reliable element alignment in construction report generation 图驱动的嵌入增强和可跟踪的LLM代理在施工报告生成中可靠的元素对齐
IF 10.3 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-02-03 DOI: 10.1016/j.autcon.2026.106816
Zhenzhao Xia, Botao Zhong, Shuai Zhang, Tonghui Zhao, Miroslaw J. Skibniewski
{"title":"Graph-driven embedding reinforcement and traceable LLM agent for reliable element alignment in construction report generation","authors":"Zhenzhao Xia, Botao Zhong, Shuai Zhang, Tonghui Zhao, Miroslaw J. Skibniewski","doi":"10.1016/j.autcon.2026.106816","DOIUrl":"https://doi.org/10.1016/j.autcon.2026.106816","url":null,"abstract":"","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"286 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dependency-aware indoor 3D scene graph prediction via multimodal feature learning 基于多模态特征学习的依赖感知室内3D场景图预测
IF 10.3 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-02-03 DOI: 10.1016/j.autcon.2026.106817
Shengnan Ke, Shibin Li, Jun Gong, Lingxiang Liu, Jianjun Luo, Bing Wang, Shengjun Tang
{"title":"Dependency-aware indoor 3D scene graph prediction via multimodal feature learning","authors":"Shengnan Ke, Shibin Li, Jun Gong, Lingxiang Liu, Jianjun Luo, Bing Wang, Shengjun Tang","doi":"10.1016/j.autcon.2026.106817","DOIUrl":"https://doi.org/10.1016/j.autcon.2026.106817","url":null,"abstract":"","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"253 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semantic naming convention-based automated BIM generation of precast concrete components from 2D CAD drawings 基于语义命名约定的2D CAD图纸自动生成预制混凝土构件的BIM
IF 10.3 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-02-03 DOI: 10.1016/j.autcon.2026.106804
Eunbeen Jeong, Seoyoung Jung, Insu Jung, Kyujin Ko, Junyoung Jang
{"title":"Semantic naming convention-based automated BIM generation of precast concrete components from 2D CAD drawings","authors":"Eunbeen Jeong, Seoyoung Jung, Insu Jung, Kyujin Ko, Junyoung Jang","doi":"10.1016/j.autcon.2026.106804","DOIUrl":"https://doi.org/10.1016/j.autcon.2026.106804","url":null,"abstract":"","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"59 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction site object detection with active transfer learning and weighted adaptive uncertainty-diversity sampling using a small imbalanced dataset 基于主动迁移学习和加权自适应不确定性多样性采样的小型不平衡数据集建筑工地目标检测
IF 10.3 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-02-03 DOI: 10.1016/j.autcon.2026.106819
Karunakar Reddy Mannem, Eyob Mengiste, Dhanu Vardhan, Borja García de Soto, Fernando Bacao
{"title":"Construction site object detection with active transfer learning and weighted adaptive uncertainty-diversity sampling using a small imbalanced dataset","authors":"Karunakar Reddy Mannem, Eyob Mengiste, Dhanu Vardhan, Borja García de Soto, Fernando Bacao","doi":"10.1016/j.autcon.2026.106819","DOIUrl":"https://doi.org/10.1016/j.autcon.2026.106819","url":null,"abstract":"","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"8 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital twins in offsite construction: Current implementations, challenges, and future pathways 非现场建设中的数字孪生:当前实现、挑战和未来途径
IF 10.3 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-02-02 DOI: 10.1016/j.autcon.2026.106820
Nima Moghimi, Oldouz Arshang, Farook Hamzeh
{"title":"Digital twins in offsite construction: Current implementations, challenges, and future pathways","authors":"Nima Moghimi, Oldouz Arshang, Farook Hamzeh","doi":"10.1016/j.autcon.2026.106820","DOIUrl":"https://doi.org/10.1016/j.autcon.2026.106820","url":null,"abstract":"","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"10 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-hosted multimodal large language models for speech-driven perception and navigation in construction robotics 建筑机器人中语音驱动感知和导航的自托管多模态大语言模型
IF 10.3 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-01-31 DOI: 10.1016/j.autcon.2026.106805
Muhammad Anas Gopee, Samuel A. Prieto, Borja García de Soto
{"title":"Self-hosted multimodal large language models for speech-driven perception and navigation in construction robotics","authors":"Muhammad Anas Gopee, Samuel A. Prieto, Borja García de Soto","doi":"10.1016/j.autcon.2026.106805","DOIUrl":"https://doi.org/10.1016/j.autcon.2026.106805","url":null,"abstract":"","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"4 1","pages":""},"PeriodicalIF":10.3,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146095852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated lightweight networks for multi-material bridge crack segmentation 多材料桥梁裂缝分割的自动化轻量化网络
IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2026-01-30 DOI: 10.1016/j.autcon.2026.106808
Mohammed Ameen Mohammed , Haijun Zhou , Jiaolei Zhang , Shikun Xu
Crack segmentation on concrete, steel, and asphalt surfaces remains challenging due to irregular crack patterns, low contrast, and noise interference, particularly in complex environments. Although deep neural network–based methods show promise, they often struggle to balance fine-grained feature extraction with contextual understanding. Moreover, no unified model effectively detects cracks across concrete, steel bridges, and asphalt pavements on bridge decks, while most existing models are too large for edge deployment. This paper introduces CrackSeg-GWD, a lightweight encoder–decoder model integrating Group Normalization, Weight-Standardized Convolutions, DropBlock regularization, and a Symmetric Unified Focal Loss to enhance stability, reduce overfitting, and handle class imbalance. With only 0.414 M parameters and 0.849 GFLOPs, it achieves high accuracy with low computational cost. Evaluated on five public datasets, SteelCrack, YCD, Crack500, DeepCrack, and Ozgenel, CrackSeg-GWD outperforms ten state-of-the-art models, achieving consistent gains across five metrics and confirming its suitability for real-time structural monitoring and construction automation.
由于不规则的裂缝模式、低对比度和噪声干扰,特别是在复杂的环境中,混凝土、钢铁和沥青表面的裂缝分割仍然具有挑战性。尽管基于深度神经网络的方法显示出前景,但它们往往难以平衡细粒度特征提取与上下文理解。此外,没有统一的模型可以有效地检测混凝土、钢桥和桥面沥青路面上的裂缝,而现有的大多数模型都太大,无法进行边缘部署。本文介绍了一种轻量级的编码器-解码器模型CrackSeg-GWD,该模型集成了群归一化、权重标准化卷积、DropBlock正则化和对称统一焦损失,以增强稳定性、减少过拟合和处理类不平衡。仅使用0.414 M参数和0.849 GFLOPs,以较低的计算成本实现了较高的精度。通过对SteelCrack、YCD、Crack500、DeepCrack和Ozgenel这5个公共数据集的评估,CrackSeg-GWD优于10个最先进的模型,在5个指标上取得了一致的收益,并证实了其在实时结构监测和施工自动化方面的适用性。
{"title":"Automated lightweight networks for multi-material bridge crack segmentation","authors":"Mohammed Ameen Mohammed ,&nbsp;Haijun Zhou ,&nbsp;Jiaolei Zhang ,&nbsp;Shikun Xu","doi":"10.1016/j.autcon.2026.106808","DOIUrl":"10.1016/j.autcon.2026.106808","url":null,"abstract":"<div><div>Crack segmentation on concrete, steel, and asphalt surfaces remains challenging due to irregular crack patterns, low contrast, and noise interference, particularly in complex environments. Although deep neural network–based methods show promise, they often struggle to balance fine-grained feature extraction with contextual understanding. Moreover, no unified model effectively detects cracks across concrete, steel bridges, and asphalt pavements on bridge decks, while most existing models are too large for edge deployment. This paper introduces CrackSeg-GWD, a lightweight encoder–decoder model integrating Group Normalization, Weight-Standardized Convolutions, DropBlock regularization, and a Symmetric Unified Focal Loss to enhance stability, reduce overfitting, and handle class imbalance. With only 0.414 M parameters and 0.849 GFLOPs, it achieves high accuracy with low computational cost. Evaluated on five public datasets, SteelCrack, YCD, Crack500, DeepCrack, and Ozgenel, CrackSeg-GWD outperforms ten state-of-the-art models, achieving consistent gains across five metrics and confirming its suitability for real-time structural monitoring and construction automation.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"183 ","pages":"Article 106808"},"PeriodicalIF":11.5,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146074978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Automation in Construction
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1