Where chemical biology meets physiology

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature chemical biology Pub Date : 2024-09-20 DOI:10.1038/s41589-024-01739-6
Kimberly E. Beatty, Carsten Schultz
{"title":"Where chemical biology meets physiology","authors":"Kimberly E. Beatty, Carsten Schultz","doi":"10.1038/s41589-024-01739-6","DOIUrl":null,"url":null,"abstract":"Research in the early days of chemical biology was mostly limited to the application of chemical tools to model cell lines grown in incubators. Now, discoveries are being made in more physiologically relevant systems, from tissues to organisms, using precisely targeted molecules. The 2023 Chemical Biology & Physiology meeting (in Portland, Oregon) discussed the latest advances in the field, with research from around the globe demonstrating that the transition to making discoveries at the chemical biology–physiology interface is happening now.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"20 10","pages":"1254-1255"},"PeriodicalIF":12.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41589-024-01739-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Research in the early days of chemical biology was mostly limited to the application of chemical tools to model cell lines grown in incubators. Now, discoveries are being made in more physiologically relevant systems, from tissues to organisms, using precisely targeted molecules. The 2023 Chemical Biology & Physiology meeting (in Portland, Oregon) discussed the latest advances in the field, with research from around the globe demonstrating that the transition to making discoveries at the chemical biology–physiology interface is happening now.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学生物学与生理学的结合
早期的化学生物学研究大多局限于将化学工具应用于在培养箱中培育的模型细胞系。现在,人们正利用精确靶向分子,在从组织到生物体的更多生理相关系统中进行发现。2023 化学生物学与生理学会议(俄勒冈州波特兰市)讨论了该领域的最新进展,来自全球各地的研究表明,在化学生物学与生理学界面进行发现的转变正在发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
期刊最新文献
A key to sperm–egg union Guiding the pioneer Assembly-activated aggregation Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT Open-ended molecular recording of sequential cellular events into DNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1