Quantum-well resonances caused by partial confinement in MgO-based magnetic tunnel junctions

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-09-20 DOI:10.1103/physrevb.110.094428
L. N. Jiang, B. Y. Chi, W. Z. Chen, X. F. Han
{"title":"Quantum-well resonances caused by partial confinement in MgO-based magnetic tunnel junctions","authors":"L. N. Jiang, B. Y. Chi, W. Z. Chen, X. F. Han","doi":"10.1103/physrevb.110.094428","DOIUrl":null,"url":null,"abstract":"Quantum-well resonance is achieved through partial confinement in magnetic tunnel junctions (MTJs), which provides an additional operable degree of freedom to regulate quantum-well levels. Using Al/Fe/MgO/Fe/Al and Ag/Al/Fe/MgO/Fe/Al/Ag MTJs as examples, via first-principles calculations, we demonstrate that the partial confinement of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"normal\">Δ</mi><mn>1</mn></msub></math> electrons at the Al/Fe interface, and the full confinement at the Fe/MgO interface combine to produce quantum-well resonances in Fe. The quantum-well levels of Fe can be periodically adjusted by two degrees of freedom: Fe and Al thickness. The oscillation period obtained from conductance <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mrow><mo>↑</mo><mo>↑</mo></mrow></msub></math> of MTJs is 2.13 ML Fe (9 ML Al), close to 2.25 ML Fe (8.33 ML Al) calculated by Fermi wave vector in the bcc-Fe (fcc-Al) band. The combination of long and short periods enables quantum-well levels to be finely adjusted. An ultrahigh optimistic TMR effect of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>3.05</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></math>% is achieved. Our results provide a way for designing high-performance spintronics devices.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.094428","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum-well resonance is achieved through partial confinement in magnetic tunnel junctions (MTJs), which provides an additional operable degree of freedom to regulate quantum-well levels. Using Al/Fe/MgO/Fe/Al and Ag/Al/Fe/MgO/Fe/Al/Ag MTJs as examples, via first-principles calculations, we demonstrate that the partial confinement of Δ1 electrons at the Al/Fe interface, and the full confinement at the Fe/MgO interface combine to produce quantum-well resonances in Fe. The quantum-well levels of Fe can be periodically adjusted by two degrees of freedom: Fe and Al thickness. The oscillation period obtained from conductance G of MTJs is 2.13 ML Fe (9 ML Al), close to 2.25 ML Fe (8.33 ML Al) calculated by Fermi wave vector in the bcc-Fe (fcc-Al) band. The combination of long and short periods enables quantum-well levels to be finely adjusted. An ultrahigh optimistic TMR effect of 3.05×105% is achieved. Our results provide a way for designing high-performance spintronics devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Suppression of shear ionic motions in bismuth by coupling with large-amplitude internal displacement Quantum-well resonances caused by partial confinement in MgO-based magnetic tunnel junctions Pinning of vortices by impurities in unconventional superconductors Strain-driven exchange interaction and interface magnetism in LaNiO3/La0.67Sr0.33MnO3 heterostructures Unconventional superconductivity from electronic dipole fluctuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1