{"title":"Selection of Wheat (Triticum aestivum L.) Genotypes Using Yield Components, Water Use Efficiency and Major Metabolites Under Drought Stress","authors":"Maltase Mutanda, Sandiswa Figlan, Vincent Chaplot, Ntakadzeni Edwin Madala, Hussein Shimelis","doi":"10.1111/jac.12766","DOIUrl":null,"url":null,"abstract":"<p>Integrating grain yield, component traits and metabolite profiles aids in selecting drought-adapted and climate-smart crop varieties preferred by end users. Understanding the trends and magnitude of grain-based metabolites is vital for selecting wheat genotypes with higher grain yield, drought tolerance, water use efficiency and product profiles. The aim of this study was to determine the response of newly developed wheat genotypes for grain yield and component traits and metabolites under drought stress to guide selection. One hundred wheat genotypes were preliminarily evaluated for agro-morphological traits and water use efficiency under drought-stressed and non-stressed conditions during the 2022 and 2023 growing seasons using a 5 × 20 alpha lattice design with two replications. Ten high-yielding genotypes were selected based on grain yield and were validated for agronomic traits and water use efficiency (WUE), and grain samples were assayed to profile their key metabolites under drought-stressed conditions. Significant differences existed (<i>p</i> < 0.05) among the tested wheat genotypes for yield and yield components, WUE, drought tolerance and major metabolites to discern trait associations. The grain yield of the 10 genotypes ranged from 590.00 g m<sup>−2</sup> (genotype LM70 × BW140) to 800.00 g m<sup>−2</sup> (BW141 × LM71) under drought-stressed treatment, whilst under non-stressed it ranged from 760.06 g m <sup>−2</sup> (LM70 × BW140) to 908.33 g m<sup>−2</sup> (LM71 × BW162). Grain yield-based water use efficiency of the assessed genotypes was higher under non-stressed (0.18 g mm<sup>−1</sup>) than drought-stressed (0.17 g mm<sup>−1</sup>) conditions. The highest drought tolerance index (211.67) and stress susceptibility index (0.77) were recorded for BW162 × LM71, whilst the lowest tolerance index (23.33) and stress susceptibility index (0.09) were recorded in BW141 × LM71. Grain metabolites, including the apigenin-8-C-glucoside (log2Fold = 3.00) and malate (log2Fold = 3.60) were present in higher proportions in the high-yielding genotypes (BW141 × LM71 and LM71 × BW162) under drought-stressed conditions, whilst fructose (log2Fold = −0.50) and cellulose (log2Fold = −3.90) showed marked decline in the two genotypes. Based on phenotypic and metabolite profile analyses, genotypes BW141 × LM71 and LM71 × BW162 were selected for being drought-tolerant, water-use efficient and recommended for production or breeding. The findings revealed associations between yield components, water use efficiency and grain metabolites to guide the selection of best-performing and drought-tolerant wheat varieties.</p>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jac.12766","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12766","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating grain yield, component traits and metabolite profiles aids in selecting drought-adapted and climate-smart crop varieties preferred by end users. Understanding the trends and magnitude of grain-based metabolites is vital for selecting wheat genotypes with higher grain yield, drought tolerance, water use efficiency and product profiles. The aim of this study was to determine the response of newly developed wheat genotypes for grain yield and component traits and metabolites under drought stress to guide selection. One hundred wheat genotypes were preliminarily evaluated for agro-morphological traits and water use efficiency under drought-stressed and non-stressed conditions during the 2022 and 2023 growing seasons using a 5 × 20 alpha lattice design with two replications. Ten high-yielding genotypes were selected based on grain yield and were validated for agronomic traits and water use efficiency (WUE), and grain samples were assayed to profile their key metabolites under drought-stressed conditions. Significant differences existed (p < 0.05) among the tested wheat genotypes for yield and yield components, WUE, drought tolerance and major metabolites to discern trait associations. The grain yield of the 10 genotypes ranged from 590.00 g m−2 (genotype LM70 × BW140) to 800.00 g m−2 (BW141 × LM71) under drought-stressed treatment, whilst under non-stressed it ranged from 760.06 g m −2 (LM70 × BW140) to 908.33 g m−2 (LM71 × BW162). Grain yield-based water use efficiency of the assessed genotypes was higher under non-stressed (0.18 g mm−1) than drought-stressed (0.17 g mm−1) conditions. The highest drought tolerance index (211.67) and stress susceptibility index (0.77) were recorded for BW162 × LM71, whilst the lowest tolerance index (23.33) and stress susceptibility index (0.09) were recorded in BW141 × LM71. Grain metabolites, including the apigenin-8-C-glucoside (log2Fold = 3.00) and malate (log2Fold = 3.60) were present in higher proportions in the high-yielding genotypes (BW141 × LM71 and LM71 × BW162) under drought-stressed conditions, whilst fructose (log2Fold = −0.50) and cellulose (log2Fold = −3.90) showed marked decline in the two genotypes. Based on phenotypic and metabolite profile analyses, genotypes BW141 × LM71 and LM71 × BW162 were selected for being drought-tolerant, water-use efficient and recommended for production or breeding. The findings revealed associations between yield components, water use efficiency and grain metabolites to guide the selection of best-performing and drought-tolerant wheat varieties.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.