Reconfiguring Zn2+ Solvation Network and Interfacial Chemistry of Zn Metal Anode with Molecular Engineered Crown Ether Additive

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-23 DOI:10.1002/adfm.202412255
Ruifeng Han, Tao Jiang, Zhiqiao Wang, Rongrong Xue, Xinhao Liu, Yinwen Tang, Zhenhui Qi, Yue Ma
{"title":"Reconfiguring Zn2+ Solvation Network and Interfacial Chemistry of Zn Metal Anode with Molecular Engineered Crown Ether Additive","authors":"Ruifeng Han, Tao Jiang, Zhiqiao Wang, Rongrong Xue, Xinhao Liu, Yinwen Tang, Zhenhui Qi, Yue Ma","doi":"10.1002/adfm.202412255","DOIUrl":null,"url":null,"abstract":"The practical deployment of rechargeable aqueous zinc‐ion batteries (RAZBs) in the scaled power system suffers from unregulated Zn dendrite growth as well as parasitic reactions at the zinc foil/aqueous electrolyte interface, leading to insufficient zinc utilization and severe electrode corrosion. Herein, a novel crown ether additive is developed, with tailored molecular engineering, to stepwise regulate the Zn<jats:sup>2+</jats:sup> solvation network and interfacial chemistry of Zn metal anode. The designed crown ether (C5SeCN), featuring zincophilic cyano group and hydrophobic selenium, efficiently reconstructs the solvation sheath of Zn ions at the 0.3 wt.% dose amount. Additionally, the ozone plasma treatment tethers the O<jats:sup>2‐</jats:sup> groups onto the thin‐layer zinc foil, which thus binds Se atoms of the C5SeCN to the Zn anode. The Zn||Zn symmetric cells exhibit a lifespan of over 4500 h at 1 mA cm<jats:sup>−2</jats:sup> and high current density endurance of up to 10 mA cm<jats:sup>−2</jats:sup>. Moreover, the 2 mAh cm<jats:sup>−2</jats:sup> Zn||V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> full cell model, at the low N/P ratio of 2.8 with a lean electrolyte (E/C ratio = 10 µL mAh<jats:sup>−1</jats:sup>), enables robust cycling endurance at 2 A g⁻¹ for 300 cycles. This study unravels the interfacial design rationales for maximizing zinc utilization and highlights the commercial potential of crown ether additives for RAZBs development.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202412255","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The practical deployment of rechargeable aqueous zinc‐ion batteries (RAZBs) in the scaled power system suffers from unregulated Zn dendrite growth as well as parasitic reactions at the zinc foil/aqueous electrolyte interface, leading to insufficient zinc utilization and severe electrode corrosion. Herein, a novel crown ether additive is developed, with tailored molecular engineering, to stepwise regulate the Zn2+ solvation network and interfacial chemistry of Zn metal anode. The designed crown ether (C5SeCN), featuring zincophilic cyano group and hydrophobic selenium, efficiently reconstructs the solvation sheath of Zn ions at the 0.3 wt.% dose amount. Additionally, the ozone plasma treatment tethers the O2‐ groups onto the thin‐layer zinc foil, which thus binds Se atoms of the C5SeCN to the Zn anode. The Zn||Zn symmetric cells exhibit a lifespan of over 4500 h at 1 mA cm−2 and high current density endurance of up to 10 mA cm−2. Moreover, the 2 mAh cm−2 Zn||V2O5 full cell model, at the low N/P ratio of 2.8 with a lean electrolyte (E/C ratio = 10 µL mAh−1), enables robust cycling endurance at 2 A g⁻¹ for 300 cycles. This study unravels the interfacial design rationales for maximizing zinc utilization and highlights the commercial potential of crown ether additives for RAZBs development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用分子工程冠醚添加剂重构金属锌阳极的 Zn2+ 溶解网络和界面化学性质
可充电锌离子水电池(RAZBs)在规模化电力系统中的实际应用受到锌枝晶生长不规范以及锌箔/水电解质界面寄生反应的影响,导致锌利用率不足和电极腐蚀严重。本文开发了一种新型冠醚添加剂,通过量身定制的分子工程,逐步调节金属锌阳极的 Zn2+ 溶解网络和界面化学。所设计的冠醚(C5SeCN)具有亲锌的氰基和疏水的硒基,在 0.3 wt.%剂量下可有效重建锌离子的溶解鞘。此外,臭氧等离子处理将 O2- 基团拴在薄层锌箔上,从而将 C5SeCN 的 Se 原子与锌阳极结合在一起。在 1 mA cm-2 的条件下,Zn||Zn 对称电池的寿命超过 4500 小时,高电流密度耐久性高达 10 mA cm-2。此外,2 mAh cm-2 Zn|||V2O5全电池模型在低N/P比2.8和贫电解质(E/C比=10 µL mAh-1)条件下,可在2 A g-¹的条件下实现300次循环的强劲耐久性。这项研究揭示了最大限度提高锌利用率的界面设计原理,并强调了冠醚添加剂在 RAZB 开发中的商业潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Reconfiguring Zn2+ Solvation Network and Interfacial Chemistry of Zn Metal Anode with Molecular Engineered Crown Ether Additive Electric Field Regulator Constructed by Magnetron Sputtering for Dendrite‐Free and Stable Zinc Metal Anode Wavelength‐Selective Near‐Infrared Organic Upconversion Detectors for Miniaturized Light Detection and Visualization Inter-Ion Mutual Repulsion Control for Nonvolatile Artificial Synapse Wear Mechanics of the Female Locust Digging Valves: The “Good Enough” Principle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1