Jean-Malo Massicard, Delphine Noel, Andrea Calderari, André Le Jeune, Cyrille Pauthenier, Kira J Weissman
{"title":"Modular Cloning Tools for <i>Streptomyces</i> spp. and Application to the De Novo Biosynthesis of Flavokermesic Acid.","authors":"Jean-Malo Massicard, Delphine Noel, Andrea Calderari, André Le Jeune, Cyrille Pauthenier, Kira J Weissman","doi":"10.1021/acssynbio.4c00412","DOIUrl":null,"url":null,"abstract":"<p><p>The filamentous <i>Streptomyces</i> are among the most prolific producers of bioactive natural products and are thus attractive chassis for the heterologous expression of native and designed biosynthetic pathways. Although suitable <i>Streptomyces</i> hosts exist, including genetically engineered cluster-free mutants, the approach is currently limited by the relative paucity of synthetic biology tools facilitating the de novo assembly of multicomponent gene clusters. Here, we report a modular system (MoClo) for <i>Streptomyces</i> including a set of adapted vectors and genetic elements, which allow for the construction of complete genetic circuits. Critical functional validation of each of the elements was obtained using the previously reported β-glucuronidase (GusA) reporter system. Furthermore, we provide proof-of-principle for the toolbox in<i>S. albus</i>, demonstrating the efficient assembly of a biosynthetic pathway to flavokermesic acid (FK), an advanced precursor of the commercially valuable carminic acid.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00412","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The filamentous Streptomyces are among the most prolific producers of bioactive natural products and are thus attractive chassis for the heterologous expression of native and designed biosynthetic pathways. Although suitable Streptomyces hosts exist, including genetically engineered cluster-free mutants, the approach is currently limited by the relative paucity of synthetic biology tools facilitating the de novo assembly of multicomponent gene clusters. Here, we report a modular system (MoClo) for Streptomyces including a set of adapted vectors and genetic elements, which allow for the construction of complete genetic circuits. Critical functional validation of each of the elements was obtained using the previously reported β-glucuronidase (GusA) reporter system. Furthermore, we provide proof-of-principle for the toolbox inS. albus, demonstrating the efficient assembly of a biosynthetic pathway to flavokermesic acid (FK), an advanced precursor of the commercially valuable carminic acid.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.