Etienne Richy, Tania Fort, Inaki Odriozola, Petr Kohout, Florian Barbi, Tijana Martinovic, Boris Tupek, Bartosz Adamczyk, Aleksi Lehtonen, Raisa Mäkipää, Petr Baldrian
{"title":"Phosphorus limitation promotes soil carbon storage in a boreal forest exposed to long-term nitrogen fertilization","authors":"Etienne Richy, Tania Fort, Inaki Odriozola, Petr Kohout, Florian Barbi, Tijana Martinovic, Boris Tupek, Bartosz Adamczyk, Aleksi Lehtonen, Raisa Mäkipää, Petr Baldrian","doi":"10.1111/gcb.17516","DOIUrl":null,"url":null,"abstract":"<p>Forests play a crucial role in global carbon cycling by absorbing and storing significant amounts of atmospheric carbon dioxide. Although boreal forests contribute to approximately 45% of the total forest carbon sink, tree growth and soil carbon sequestration are constrained by nutrient availability. Here, we examine if long-term nutrient input enhances tree productivity and whether this leads to carbon storage or whether stimulated microbial decomposition of organic matter limits soil carbon accumulation. Over six decades, nitrogen, phosphorus, and calcium were supplied to a <i>Pinus sylvestris</i>-dominated boreal forest. We found that nitrogen fertilization alone or together with calcium and/or phosphorus increased tree biomass production by 50% and soil carbon sequestration by 65% compared to unfertilized plots. However, the nonlinear relationship observed between tree productivity and soil carbon stock across treatments suggests microbial regulation. When phosphorus was co-applied with nitrogen, it acidified the soil, increased fungal biomass, altered microbial community composition, and enhanced biopolymer degradation capabilities. While no evidence of competition between ectomycorrhizal and saprotrophic fungi has been observed, key functional groups with the potential to reduce carbon stocks were identified. In contrast, when nitrogen was added without phosphorus, it increased soil carbon sequestration because microbial activity was likely limited by phosphorus availability. In conclusion, the addition of nitrogen to boreal forests may contribute to global warming mitigation, but this effect is context dependent.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"30 9","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.17516","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17516","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Forests play a crucial role in global carbon cycling by absorbing and storing significant amounts of atmospheric carbon dioxide. Although boreal forests contribute to approximately 45% of the total forest carbon sink, tree growth and soil carbon sequestration are constrained by nutrient availability. Here, we examine if long-term nutrient input enhances tree productivity and whether this leads to carbon storage or whether stimulated microbial decomposition of organic matter limits soil carbon accumulation. Over six decades, nitrogen, phosphorus, and calcium were supplied to a Pinus sylvestris-dominated boreal forest. We found that nitrogen fertilization alone or together with calcium and/or phosphorus increased tree biomass production by 50% and soil carbon sequestration by 65% compared to unfertilized plots. However, the nonlinear relationship observed between tree productivity and soil carbon stock across treatments suggests microbial regulation. When phosphorus was co-applied with nitrogen, it acidified the soil, increased fungal biomass, altered microbial community composition, and enhanced biopolymer degradation capabilities. While no evidence of competition between ectomycorrhizal and saprotrophic fungi has been observed, key functional groups with the potential to reduce carbon stocks were identified. In contrast, when nitrogen was added without phosphorus, it increased soil carbon sequestration because microbial activity was likely limited by phosphorus availability. In conclusion, the addition of nitrogen to boreal forests may contribute to global warming mitigation, but this effect is context dependent.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.