A p21 reporter iPSC line for evaluating CRISPR-Cas9 and vector-induced stress responses.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY STEM CELLS Pub Date : 2024-11-05 DOI:10.1093/stmcls/sxae056
Yi-Dan Sun, Guo-Hua Li, Feng Zhang, Tao Cheng, Jian-Ping Zhang, Xiao-Bing Zhang
{"title":"A p21 reporter iPSC line for evaluating CRISPR-Cas9 and vector-induced stress responses.","authors":"Yi-Dan Sun, Guo-Hua Li, Feng Zhang, Tao Cheng, Jian-Ping Zhang, Xiao-Bing Zhang","doi":"10.1093/stmcls/sxae056","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas9 editing triggers activation of the TP53-p21 pathway, but the impacts of different editing components and delivery methods have not been fully explored. In this study, we introduce a p21-mNeonGreen reporter iPSC line to monitor TP53-p21 pathway activation. This reporter enables dynamic tracking of p21 expression via flow cytometry, revealing a strong correlation between p21 expression and indel frequencies, and highlighting its utility in guide RNA screening. Our findings show that p21 activation is significantly more pronounced with double-stranded oligodeoxynucleotides (ODNs) or adeno-associated viral vectors (AAVs) compared to their single-stranded counterparts. Lentiviral vectors (LVs) and integrase-defective lentiviral vectors induce notably lower p21 expression than AAVs, suggesting their suitability for gene therapy in sensitive cells such as hematopoietic stem cells or immune cells. Additionally, specific viral promoters like SFFV significantly amplify p21 activation, emphasizing the critical role of promoter selection in vector development. Thus, the p21-mNeonGreen reporter iPSC line is a valuable tool for assessing the potential adverse effects of gene editing methodologies and vectors. Highlights Established a p21-mNeonGreen reporter iPSC line to track activation of the TP53-p21 pathway. Found a direct correlation between p21-mNeonGreen expression and indel frequencies, aiding in gRNA screening. Showed that LVs are preferable over AAVs for certain cells due to lower p21 activation, with viral promoter choice impacting p21 response.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"992-1005"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-Cas9 editing triggers activation of the TP53-p21 pathway, but the impacts of different editing components and delivery methods have not been fully explored. In this study, we introduce a p21-mNeonGreen reporter iPSC line to monitor TP53-p21 pathway activation. This reporter enables dynamic tracking of p21 expression via flow cytometry, revealing a strong correlation between p21 expression and indel frequencies, and highlighting its utility in guide RNA screening. Our findings show that p21 activation is significantly more pronounced with double-stranded oligodeoxynucleotides (ODNs) or adeno-associated viral vectors (AAVs) compared to their single-stranded counterparts. Lentiviral vectors (LVs) and integrase-defective lentiviral vectors induce notably lower p21 expression than AAVs, suggesting their suitability for gene therapy in sensitive cells such as hematopoietic stem cells or immune cells. Additionally, specific viral promoters like SFFV significantly amplify p21 activation, emphasizing the critical role of promoter selection in vector development. Thus, the p21-mNeonGreen reporter iPSC line is a valuable tool for assessing the potential adverse effects of gene editing methodologies and vectors. Highlights Established a p21-mNeonGreen reporter iPSC line to track activation of the TP53-p21 pathway. Found a direct correlation between p21-mNeonGreen expression and indel frequencies, aiding in gRNA screening. Showed that LVs are preferable over AAVs for certain cells due to lower p21 activation, with viral promoter choice impacting p21 response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于评估 CRISPR-Cas9 和载体诱导的应激反应的 p21 报告 iPSC 系。
CRISPR-Cas9编辑会触发TP53-p21通路的激活,但不同编辑成分和传递方法的影响尚未得到充分探讨。在本研究中,我们引入了一种 p21-mNeonGreen 报告 iPSC 株系来监测 TP53-p21 通路的激活。这种报告基因能通过流式细胞术动态跟踪 p21 的表达,揭示了 p21 表达与吲哚频率之间的强相关性,并突出了它在引导 RNA 筛选中的实用性。我们的研究结果表明,与单链寡核苷酸(ODN)或腺相关病毒载体(AAV)相比,双链寡核苷酸(ODN)或腺相关病毒载体对 p21 的激活作用更为明显。慢病毒载体(LV)和整合酶缺陷慢病毒载体(IDLV)诱导的 p21 表达量明显低于 AAV,这表明它们适合用于敏感细胞(如造血干细胞或免疫细胞)的基因治疗。此外,特定的病毒启动子(如 SFFV)能显著增强 p21 的激活,这强调了启动子选择在载体开发中的关键作用。因此,p21-mNeonGreen 报告 iPSC 系是评估基因编辑方法和载体潜在不良影响的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
期刊最新文献
Trained Mesenchymal Stromal Cell-Based Therapy HXB-319 for Treating Diffuse Alveolar Hemorrhage in a Pristane-induced Murine Model. A small molecule K-3 promotes PDX1 expression and potentiates the differentiation of pluripotent stem cells into insulin-producing pancreatic β cells. Microglia in the spinal cord stem cell niche regulate neural precursor cell proliferation via soluble CD40 in response to myelin basic protein. Rapid Disease Progression of Myelodysplastic Syndrome is Reflected in Transcriptomic and Functional Abnormalities of Bone Marrow MSCs. Therapeutic potential of stem cell-derived extracellular vesicles in neurodegenerative diseases associated with cognitive decline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1