Impact of extended starvation conditions on bioelectrocatalytic activity of a methane-producing microbial electrolysis cell.

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-09-15 DOI:10.1016/j.biortech.2024.131491
Lorenzo Cristiani, Marco Zeppilli, Sergio Brutti, Sebastià Puig, Gaia Salvatori, Marco Petrangeli Papini, Marianna Villano
{"title":"Impact of extended starvation conditions on bioelectrocatalytic activity of a methane-producing microbial electrolysis cell.","authors":"Lorenzo Cristiani, Marco Zeppilli, Sergio Brutti, Sebastià Puig, Gaia Salvatori, Marco Petrangeli Papini, Marianna Villano","doi":"10.1016/j.biortech.2024.131491","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of a methane-producing microbial electrolysis cell (MEC) markedly relies on the activity and resilience of its electroactive anodic biofilm. Here, the capability of an MEC anodic biofilm to recover following extended starvation periods (90 days) and to function under different applied anode potentials (i.e., +0.20 and -0.10 V, vs. Standard Hydrogen Electrode-SHE) was investigated. Cyclic voltammetry proved to be an insightful means to characterize the biofilm electrocatalytic activity and to track the dynamics of biofilm reactivation. Under all tested conditions the anodic biofilm rapidly and completely recovered from starvation in less than 144 h. However, starvation reduced the electron transfer redundancy of the biofilm causing the disappearance of redox sites operating at the more positive potentials (around 0.0 V vs. SHE) and retaining those having a formal potential lower than -0.18 V vs. SHE. This study presents compelling evidence for the resilience and efficiency of methane-producing MEC.</p>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2024.131491","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of a methane-producing microbial electrolysis cell (MEC) markedly relies on the activity and resilience of its electroactive anodic biofilm. Here, the capability of an MEC anodic biofilm to recover following extended starvation periods (90 days) and to function under different applied anode potentials (i.e., +0.20 and -0.10 V, vs. Standard Hydrogen Electrode-SHE) was investigated. Cyclic voltammetry proved to be an insightful means to characterize the biofilm electrocatalytic activity and to track the dynamics of biofilm reactivation. Under all tested conditions the anodic biofilm rapidly and completely recovered from starvation in less than 144 h. However, starvation reduced the electron transfer redundancy of the biofilm causing the disappearance of redox sites operating at the more positive potentials (around 0.0 V vs. SHE) and retaining those having a formal potential lower than -0.18 V vs. SHE. This study presents compelling evidence for the resilience and efficiency of methane-producing MEC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
延长饥饿条件对产甲烷微生物电解池生物电催化活性的影响。
甲烷生产微生物电解池(MEC)的性能明显依赖于其电活性阳极生物膜的活性和恢复能力。在此,我们研究了甲烷生产微生物电解池阳极生物膜在长时间(90 天)饥饿后的恢复能力,以及在不同应用阳极电位(即 +0.20 和 -0.10 V,与标准氢电极-SHE 相比)下的功能。循环伏安法被证明是描述生物膜电催化活性和跟踪生物膜再活化动态的有效方法。在所有测试条件下,阳极生物膜都能在不到 144 小时内从饥饿状态中迅速完全恢复。然而,饥饿降低了生物膜的电子传递冗余度,导致在较正电位(相对于 SHE 约 0.0 V)下运行的氧化还原位点消失,而形式电位低于相对于 SHE -0.18 V 的氧化还原位点得以保留。这项研究提供了令人信服的证据,证明了产甲烷的 MEC 的恢复能力和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Achieving advanced nitrogen removal with anammox and endogenous partial denitrification driven by efficient hydrolytic fermentation of slowly-biodegradable organic matter. Cadmium removal by constructed wetlands containing different substrates: performance, microorganisms and mechanisms. From agricultural biomass to D form lactic acid in ton scale via strain engineering of Lactiplantibacillus pentosus. Greenhouse gas emissions from rotating biological contactors combined with hybrid constructed wetlands treating polluted river. Mechanism of carbonized humic acid and magnesium aluminum-layered double hydroxide promoting biohydrogen generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1