Cardamonin inhibits silicosis development through the PI3K-AKT signaling pathway

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2024-09-21 DOI:10.1016/j.ecoenv.2024.117067
{"title":"Cardamonin inhibits silicosis development through the PI3K-AKT signaling pathway","authors":"","doi":"10.1016/j.ecoenv.2024.117067","DOIUrl":null,"url":null,"abstract":"<div><div>Silicosis is one of the most severe occupational diseases characterized by inflammatory cell infiltration, fibroblasts activation, and fibrosis in the lung. However, specific drug treatments are lacking. Cardamonin (CDM) has been reported to possess antitumor, anti-inflammatory/fibrotic effects. While, the effect of CDM on the progression of silicosis remains unknown. In this study, we established a SiO<sub>2</sub>-M stimulated fibroblast cell model, and explored the antifibrotic effect of CDM and the related molecular mechanism using WB, RT-qPCR, and immunofluorescence. The results indicate that CDM inhibits SiO<sub>2</sub>-M-induced fibroblast activation, proliferation, and migration. Furthermore, a silicosis mouse model was established through injecting silica suspension intratracheally. The results revealed that CDM retards the progression of pulmonary fibrosis. The RNA sequencing results suggest that the antifibrotic effect of CDM may be mediated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. In conclusion, the results of this study demonstrate that CDM inhibits the development of silicosis via the PI3K-AKT signaling pathway, which could provide guidance for the development of drugs for silicosis treatment.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0147651324011436/pdfft?md5=3e69d1e8b0cfca7b0a00dd27c5148c40&pid=1-s2.0-S0147651324011436-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324011436","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Silicosis is one of the most severe occupational diseases characterized by inflammatory cell infiltration, fibroblasts activation, and fibrosis in the lung. However, specific drug treatments are lacking. Cardamonin (CDM) has been reported to possess antitumor, anti-inflammatory/fibrotic effects. While, the effect of CDM on the progression of silicosis remains unknown. In this study, we established a SiO2-M stimulated fibroblast cell model, and explored the antifibrotic effect of CDM and the related molecular mechanism using WB, RT-qPCR, and immunofluorescence. The results indicate that CDM inhibits SiO2-M-induced fibroblast activation, proliferation, and migration. Furthermore, a silicosis mouse model was established through injecting silica suspension intratracheally. The results revealed that CDM retards the progression of pulmonary fibrosis. The RNA sequencing results suggest that the antifibrotic effect of CDM may be mediated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. In conclusion, the results of this study demonstrate that CDM inhibits the development of silicosis via the PI3K-AKT signaling pathway, which could provide guidance for the development of drugs for silicosis treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白豆蔻素通过 PI3K-AKT 信号通路抑制矽肺病的发展。
矽肺病是最严重的职业病之一,其特征是炎症细胞浸润、成纤维细胞活化和肺部纤维化。然而,目前还缺乏特效药物治疗。据报道,白豆蔻素(CDM)具有抗肿瘤、抗炎和抗纤维化的作用。但是,CDM 对矽肺病进展的影响仍然未知。本研究建立了二氧化硅-M刺激成纤维细胞模型,并利用WB、RT-qPCR和免疫荧光等方法探讨了CDM的抗纤维化作用及其相关分子机制。结果表明,CDM 可抑制 SiO2-M 诱导的成纤维细胞活化、增殖和迁移。此外,还通过气管内注射二氧化硅悬浮液建立了矽肺小鼠模型。结果显示,CDM 可延缓肺纤维化的进展。RNA 测序结果表明,CDM 的抗纤维化作用可能是由磷脂肌醇 3- 激酶/蛋白激酶 B(PI3K/AKT)信号通路介导的。总之,本研究结果表明,CDM可通过PI3K-AKT信号通路抑制矽肺的发展,这为开发治疗矽肺的药物提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
Crotonaldehyde paralyzes arteries by inducing impairment of ion channels, vascular histiocytic injury, overproduction of reactive oxygen species, mitochondrial damage, and autophagy Taraxasterol attenuates zearalenone-induced kidney damage in mice by modulating oxidative stress and endoplasmic reticulum stress Polystyrene nanoplastics mediate skeletal toxicity through oxidative stress and the BMP pathway in zebrafish (Danio rerio) Dietary Aflatoxin G1 exposure causes an imbalance between pulmonary tissue-resident alveolar macrophages and monocyte-derived macrophages in both mother and offspring mice Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1