Metabolic changes induced by heavy metal copper exposure in human ovarian granulosa cells

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2024-09-20 DOI:10.1016/j.ecoenv.2024.117078
{"title":"Metabolic changes induced by heavy metal copper exposure in human ovarian granulosa cells","authors":"","doi":"10.1016/j.ecoenv.2024.117078","DOIUrl":null,"url":null,"abstract":"<div><div>Copper (Cu) is a common heavy metal and a hazardous environmental pollutant. Emerging epidemiological evidence suggests that Cu exposure is associated with female infertility, especially ovarian dysfunction. However, the mechanisms underlying ovarian toxicity remain poorly understood. Granulosa cells play crucial roles in follicle development and are the main target cells of environmental pollutants for ovarian toxicity. In this study, we investigated the effects of Cu exposure on human granulosa (KGN) cells by using cell biology and metabolomics methods, and explored the molecular mechanisms of Cu-induced cytotoxicity. We found that Cu reduced cell viability in a dose- and time-dependent manner. Then, metabolomic analyses led to the identification of 279, 368 and 466 differentially expressed metabolites (DEMs) in KGN cells exposed to 10, 60 and 240 μM Cu, respectively. Pathway enrichment analysis revealed that high Cu led to disturbances of glutathione metabolism, nucleotide metabolism, glycerophospholipid and ether lipid metabolism. Using cell biological assays, we found that exposure to high Cu significantly decreased the GSH/GSSG ratio and altered the activities of the antioxidant enzymes SOD and CAT. Exposure to high Cu significantly increased the level of mitochondrial ROS. These findings further supported the results revealed by metabolomic analysis and provided clues for elucidating the mechanism by which Cu interferes with the development of ovarian follicles.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0147651324011540/pdfft?md5=53eb3e0cffda6780a7c13da50e2cfc1a&pid=1-s2.0-S0147651324011540-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324011540","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Copper (Cu) is a common heavy metal and a hazardous environmental pollutant. Emerging epidemiological evidence suggests that Cu exposure is associated with female infertility, especially ovarian dysfunction. However, the mechanisms underlying ovarian toxicity remain poorly understood. Granulosa cells play crucial roles in follicle development and are the main target cells of environmental pollutants for ovarian toxicity. In this study, we investigated the effects of Cu exposure on human granulosa (KGN) cells by using cell biology and metabolomics methods, and explored the molecular mechanisms of Cu-induced cytotoxicity. We found that Cu reduced cell viability in a dose- and time-dependent manner. Then, metabolomic analyses led to the identification of 279, 368 and 466 differentially expressed metabolites (DEMs) in KGN cells exposed to 10, 60 and 240 μM Cu, respectively. Pathway enrichment analysis revealed that high Cu led to disturbances of glutathione metabolism, nucleotide metabolism, glycerophospholipid and ether lipid metabolism. Using cell biological assays, we found that exposure to high Cu significantly decreased the GSH/GSSG ratio and altered the activities of the antioxidant enzymes SOD and CAT. Exposure to high Cu significantly increased the level of mitochondrial ROS. These findings further supported the results revealed by metabolomic analysis and provided clues for elucidating the mechanism by which Cu interferes with the development of ovarian follicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重金属铜暴露诱导人类卵巢颗粒细胞的代谢变化
铜(Cu)是一种常见的重金属,也是一种有害的环境污染物。新的流行病学证据表明,铜暴露与女性不孕有关,尤其是卵巢功能障碍。然而,人们对卵巢毒性的机制仍然知之甚少。颗粒细胞在卵泡发育中起着至关重要的作用,是环境污染物对卵巢毒性的主要靶细胞。本研究采用细胞生物学和代谢组学方法研究了铜暴露对人类颗粒细胞(KGN)的影响,并探讨了铜诱导细胞毒性的分子机制。我们发现,铜以剂量和时间依赖的方式降低了细胞的活力。然后,通过代谢组学分析,在暴露于 10、60 和 240 μM Cu 的 KGN 细胞中分别鉴定出 279、368 和 466 个差异表达代谢物(DEMs)。通路富集分析表明,高浓度铜导致谷胱甘肽代谢、核苷酸代谢、甘油磷脂和醚脂代谢紊乱。通过细胞生物学实验,我们发现接触高浓度铜会显著降低 GSH/GSSG 比率,并改变抗氧化酶 SOD 和 CAT 的活性。接触高浓度铜会明显增加线粒体 ROS 的水平。这些发现进一步支持了代谢组学分析所揭示的结果,并为阐明铜干扰卵泡发育的机制提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
Crotonaldehyde paralyzes arteries by inducing impairment of ion channels, vascular histiocytic injury, overproduction of reactive oxygen species, mitochondrial damage, and autophagy Taraxasterol attenuates zearalenone-induced kidney damage in mice by modulating oxidative stress and endoplasmic reticulum stress Polystyrene nanoplastics mediate skeletal toxicity through oxidative stress and the BMP pathway in zebrafish (Danio rerio) Dietary Aflatoxin G1 exposure causes an imbalance between pulmonary tissue-resident alveolar macrophages and monocyte-derived macrophages in both mother and offspring mice Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1