{"title":"Fluorescence of europium activated by molecular-like silver clusters for the detection of alkaline phosphatase activity.","authors":"Chen-Xi Zhao, Xiao-Xia Li, Yang Shu","doi":"10.1016/j.talanta.2024.126892","DOIUrl":null,"url":null,"abstract":"<p><p>Alkaline phosphatase (ALP) is abnormally expressed in some cancers and promotes the growth, metastasis, and invasion of cancer cells. The detection of ALP is of great significance for both pathological study and clinical detection. In this work, a europium (Eu)-based fluorescence detection sensor was prepared in a mild reaction condition. LaF<sub>3</sub>:Eu nanoparticles was mixed with ethylene imine polymer (PEI) and Ag<sup>+</sup> ions. PEI was used as stabilizer and reducing agent, and Ag<sup>+</sup> ions were reduced as molecular-like silver clusters (ML-Ag NCs). The fluorescence of LaF<sub>3</sub>:Eu nanoparticles was enhanced by ML-Ag NCs through energy transfer. When ascorbic acid 2-phosphate (AAP) was hydrolyzed to ascorbic acid (AA) in the presence of ALP, AA reduced Ag<sup>+</sup> ions to silver nanoparticles (Ag NPs) and quenched the fluorescence of LaF<sub>3</sub>:Eu/PEI/Ag. The activity of ALP was detected by measuring the fluorescence intensity of Eu<sup>3+</sup> at 618 nm. In the concentration range from 2.0 to 16.0 U/L, the fluorescence intensity ratio ((F<sub>0</sub>-F)/F<sub>0</sub>) had a linear relationship with the logarithm of ALP concentration. The limit of detection (LOD) was 1.3 U/L. Moreover, the ALP activity was detected successfully in cancer cells by this method. The sensing platform has application potential in the detection of ALP activity in biological systems.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126892","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alkaline phosphatase (ALP) is abnormally expressed in some cancers and promotes the growth, metastasis, and invasion of cancer cells. The detection of ALP is of great significance for both pathological study and clinical detection. In this work, a europium (Eu)-based fluorescence detection sensor was prepared in a mild reaction condition. LaF3:Eu nanoparticles was mixed with ethylene imine polymer (PEI) and Ag+ ions. PEI was used as stabilizer and reducing agent, and Ag+ ions were reduced as molecular-like silver clusters (ML-Ag NCs). The fluorescence of LaF3:Eu nanoparticles was enhanced by ML-Ag NCs through energy transfer. When ascorbic acid 2-phosphate (AAP) was hydrolyzed to ascorbic acid (AA) in the presence of ALP, AA reduced Ag+ ions to silver nanoparticles (Ag NPs) and quenched the fluorescence of LaF3:Eu/PEI/Ag. The activity of ALP was detected by measuring the fluorescence intensity of Eu3+ at 618 nm. In the concentration range from 2.0 to 16.0 U/L, the fluorescence intensity ratio ((F0-F)/F0) had a linear relationship with the logarithm of ALP concentration. The limit of detection (LOD) was 1.3 U/L. Moreover, the ALP activity was detected successfully in cancer cells by this method. The sensing platform has application potential in the detection of ALP activity in biological systems.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.