{"title":"The Leptospira interrogans proteome's response to zinc highlights the potential involvement of this metal in translational-machinery and virulence.","authors":"Amanda Silva Hecktheuer, Cassia Moreira Santos, Fabienne Antunes Ferreira, Angela Silva Barbosa, Lourdes Isaac, Marilis Valle Marques, Ricardo Ruiz Mazzon","doi":"10.1007/s10534-024-00634-w","DOIUrl":null,"url":null,"abstract":"<p><p>Leptospires, as motile Gram-negative bacteria, employ sophisticated strategies for efficient invasion and dissemination within their hosts. In response, hosts counteract pathogens through nutritional immunity, a concept involving the deprivation of essential metals such as zinc. Zinc, pivotal in modulating pathogen-host interactions, influences proteins structural, catalytic, and regulatory functions. A comprehensive understanding of how leptospires regulate intracellular zinc availability is crucial for deciphering their survival mechanisms. This study explores the proteomic profile of Leptospira interrogans sv. Copenhageni str. 10A cultivated in Ellinghausen-McCullough-Johnson-Harris medium supplemented with the zinc chelator TPA or ZnCl<sub>2</sub>. Among the 2161 proteins identified, 488 were subjected to scrutiny, revealing 102 less abundant and 81 more abundant in response to TPA. Of these 488 proteins, 164 were exclusive to the presence of TPA and 141 were exclusive to the zinc-enriched conditions. Differentially expressed proteins were classified into clusters of orthologous groups (COGs) with a distribution in metabolic functions (37.8%), information storage/processing (21.08%), cellular processes/signaling (28.04%), and poorly characterized proteins (10.65%). Differentially expressed proteins are putatively involved in processes like 1-carbon compound metabolism, folate biosynthesis, and amino acid/nucleotide synthesis. Zinc availability significantly impacted key processes putatively related to leptospires' interactions with their host, such as motility, biofilm formation, and immune escape. Under conditions of higher zinc concentration, ribosomal proteins, chaperones and components of transport systems were observed, highlighting interactions between regulatory networks responsive to zinc and iron in L. interrogans. This study not only revealed hypothetical proteins potentially related to zinc homeostasis, but also identified possible virulence mechanisms and pathogen-host adaptation strategies influenced by the availability of this metal. There is an urgent need, based on these data, for further in-depth studies aimed at detailing the role of zinc in these pathways and mechanisms, which may ultimately determine more effective therapeutic approaches to combat Leptospira infections.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-024-00634-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Leptospires, as motile Gram-negative bacteria, employ sophisticated strategies for efficient invasion and dissemination within their hosts. In response, hosts counteract pathogens through nutritional immunity, a concept involving the deprivation of essential metals such as zinc. Zinc, pivotal in modulating pathogen-host interactions, influences proteins structural, catalytic, and regulatory functions. A comprehensive understanding of how leptospires regulate intracellular zinc availability is crucial for deciphering their survival mechanisms. This study explores the proteomic profile of Leptospira interrogans sv. Copenhageni str. 10A cultivated in Ellinghausen-McCullough-Johnson-Harris medium supplemented with the zinc chelator TPA or ZnCl2. Among the 2161 proteins identified, 488 were subjected to scrutiny, revealing 102 less abundant and 81 more abundant in response to TPA. Of these 488 proteins, 164 were exclusive to the presence of TPA and 141 were exclusive to the zinc-enriched conditions. Differentially expressed proteins were classified into clusters of orthologous groups (COGs) with a distribution in metabolic functions (37.8%), information storage/processing (21.08%), cellular processes/signaling (28.04%), and poorly characterized proteins (10.65%). Differentially expressed proteins are putatively involved in processes like 1-carbon compound metabolism, folate biosynthesis, and amino acid/nucleotide synthesis. Zinc availability significantly impacted key processes putatively related to leptospires' interactions with their host, such as motility, biofilm formation, and immune escape. Under conditions of higher zinc concentration, ribosomal proteins, chaperones and components of transport systems were observed, highlighting interactions between regulatory networks responsive to zinc and iron in L. interrogans. This study not only revealed hypothetical proteins potentially related to zinc homeostasis, but also identified possible virulence mechanisms and pathogen-host adaptation strategies influenced by the availability of this metal. There is an urgent need, based on these data, for further in-depth studies aimed at detailing the role of zinc in these pathways and mechanisms, which may ultimately determine more effective therapeutic approaches to combat Leptospira infections.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.