Apoptotic Potential of Iloneoside from Gongronema latifolium Benth against Prostate Cancer Cells Using In Vitro and In Silico Approach.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Biophysics Pub Date : 2024-09-20 DOI:10.1007/s12013-024-01507-2
Gideon A Gyebi, Saheed O Afolabi, Oludare M Ogunyemi, Ibrahim M Ibrahim, Olufunke E Olorundare, Joseph O Adebayo, Mamoru Koketsu
{"title":"Apoptotic Potential of Iloneoside from Gongronema latifolium Benth against Prostate Cancer Cells Using In Vitro and In Silico Approach.","authors":"Gideon A Gyebi, Saheed O Afolabi, Oludare M Ogunyemi, Ibrahim M Ibrahim, Olufunke E Olorundare, Joseph O Adebayo, Mamoru Koketsu","doi":"10.1007/s12013-024-01507-2","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is a major cause of cancer-related mortality in men worldwide. The anti-proliferative activity of Gongronema latifolium leaf extracts on some cancer cells has been reported. Herein, we investigated the growth inhibitory effect of the Gongronema latilolium leaf methanol extract and isolated pregnane (iloneoside) against prostate cancer cell lines using the MTT cell proliferation assay, apoptosis quantification, cell cycle analysis using flow cytometry and computational analysis molecular docking, molecular dynamics simulation (MDs), binding free energy computation and cluster analysis. In addition, UPLC-ESI-TOFMS chemical fingerprinting of previously isolated compounds was performed. The extract inhibited the growth of the cell lines with an IC<sub>50</sub> of 49.3 µg/ml and 28.4 µg/ml for 24 h and 48 h, respectively, for PC3; and 43.7 µg/ml and 22.3 µg/ml for 24 h and 48 h, respectively, for DU145. Iloneoside demonstrated low inhibitory activities against PC3 and DU145 (IC<sub>50</sub> > 80 μM). Apoptotic quantification and cell cycle analysis further showed that iloneoside induced apoptosis in a few cells at a dose of 200 uM. The ensemble-based molecular docking of the iloneoside to BCL-XL and BCL-2 proteins, and docking to MCL-1, BCL-A1 and BFL-1 proteins, respectively, presented binding energies of -7.22 ± 0.5, -8.12 ± 0.55, -7.1, -7.2 and -6.3 kcal/mol, while the MM/PBSA binding free energy was -25.72 ± 7.22 and -27.76 ± 11.32 kcal/mol for BCL-XL and BCL-2 proteins. Furthermore, iloneoside was stable during the 100 ns MDs analysis, while the clustering of the MDs trajectories showed that the interactions were strongly preserved. Iloneoside, in part, or in synergy with other constituents, may be responsible for the antiproliferative activities of the leaf, subject to further investigation.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01507-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer is a major cause of cancer-related mortality in men worldwide. The anti-proliferative activity of Gongronema latifolium leaf extracts on some cancer cells has been reported. Herein, we investigated the growth inhibitory effect of the Gongronema latilolium leaf methanol extract and isolated pregnane (iloneoside) against prostate cancer cell lines using the MTT cell proliferation assay, apoptosis quantification, cell cycle analysis using flow cytometry and computational analysis molecular docking, molecular dynamics simulation (MDs), binding free energy computation and cluster analysis. In addition, UPLC-ESI-TOFMS chemical fingerprinting of previously isolated compounds was performed. The extract inhibited the growth of the cell lines with an IC50 of 49.3 µg/ml and 28.4 µg/ml for 24 h and 48 h, respectively, for PC3; and 43.7 µg/ml and 22.3 µg/ml for 24 h and 48 h, respectively, for DU145. Iloneoside demonstrated low inhibitory activities against PC3 and DU145 (IC50 > 80 μM). Apoptotic quantification and cell cycle analysis further showed that iloneoside induced apoptosis in a few cells at a dose of 200 uM. The ensemble-based molecular docking of the iloneoside to BCL-XL and BCL-2 proteins, and docking to MCL-1, BCL-A1 and BFL-1 proteins, respectively, presented binding energies of -7.22 ± 0.5, -8.12 ± 0.55, -7.1, -7.2 and -6.3 kcal/mol, while the MM/PBSA binding free energy was -25.72 ± 7.22 and -27.76 ± 11.32 kcal/mol for BCL-XL and BCL-2 proteins. Furthermore, iloneoside was stable during the 100 ns MDs analysis, while the clustering of the MDs trajectories showed that the interactions were strongly preserved. Iloneoside, in part, or in synergy with other constituents, may be responsible for the antiproliferative activities of the leaf, subject to further investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用体外和硅学方法研究从Gongronema latifolium Benth中提取的Iloneoside对前列腺癌细胞的凋亡潜力
前列腺癌是全球男性因癌症死亡的主要原因。有报道称,扁柏叶提取物对一些癌细胞具有抗增殖活性。在此,我们采用 MTT 细胞增殖试验、细胞凋亡定量分析、流式细胞仪细胞周期分析以及分子对接、分子动力学模拟(MDs)、结合自由能计算和聚类分析等计算分析方法,研究了扁柏叶甲醇提取物和分离孕烷(伊洛苷)对前列腺癌细胞株的生长抑制作用。此外,还对以前分离的化合物进行了 UPLC-ESI-TOFMS 化学指纹分析。提取物抑制了细胞系的生长,对 PC3 的 24 小时和 48 小时的 IC50 分别为 49.3 µg/ml 和 28.4 µg/ml;对 DU145 的 24 小时和 48 小时的 IC50 分别为 43.7 µg/ml 和 22.3 µg/ml。伊洛酮苷对 PC3 和 DU145 的抑制活性较低(IC50 > 80 μM)。细胞凋亡定量和细胞周期分析进一步表明,伊洛酮苷在剂量为200 uM时可诱导少数细胞凋亡。伊洛酮苷与BCL-XL和BCL-2蛋白的基于集合的分子对接,以及与MCL-1、BCL-A1和BFL-1蛋白的对接,其结合能分别为-7.22±0.5、-8.12±0.55、-7.1、-7.2和-6.3 kcal/mol,而BCL-XL和BCL-2蛋白的MM/PBSA结合自由能分别为-25.72±7.22和-27.76±11.32 kcal/mol。此外,伊洛酮苷在 100 ns MDs 分析期间保持稳定,而 MDs 轨迹的聚类显示,相互作用得到了很好的保留。伊洛酮苷可能是叶片抗增殖活性的部分原因,或与其他成分协同作用的原因,有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
期刊最新文献
Iron Overloading Potentiates the Antitumor Activity of 5-Fluorouracil by Promoting Apoptosis and Ferroptosis in Colorectal Cancer Cells. Navigating the Fractional Calcium Dynamics of Orai Mechanism in Polar Dimensions. BAG3 Mediated Down-regulation in Expression of p66shc has Ramifications on Cellular Proliferation, Apoptosis and Metastasis. Rutin Ameliorates Inflammation and Oxidative Stress in Ulcerative Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway. Study on the Role of EPHB6 in Inhibiting the Malignant Progression of Cervical Cancer C33A Cells by Binding to CBX7.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1