Pub Date : 2025-03-01Epub Date: 2024-09-28DOI: 10.1007/s12013-024-01512-5
Gang Wu, Jun Liu, Guirong Ma, Qiuyu Wei, Xinghui Song
Hyperuricemia remains an elusive factor in the pathogenesis of vascular endothelial injury. This study elucidates the role of hydroxychloroquine (HCQ) in the context of uric acid (UA)-induced vascular endothelial cell damage. Human umbilical vein endothelial cells (HUVECs) were exposed to varying UA concentrations (6 mg/dL to 50 mg/dL) for 48 h, or to 50 mg/dL UA for different time points (6 to 72 h). We observed a concentration- and time-dependent inhibition of cell proliferation, particularly at 40 mg/dL and 50 mg/dL UA. The autophagy marker LC3 exhibited reduced fluorescence intensity post-UA treatment, along with decreased expression of LC3-II/LC3I, beclin1, and p62, indicating impaired autophagy. The mechanistic exploration revealed that HCQ, in conjunction with the mitochondrial autophagy inhibitor Cyclosporine A (CsA), exacerbated the inhibitory effects of UA on HUVEC autophagy. This was evidenced by a further reduction in mitochondrial autophagy-related proteins and diminished fluorescence of LC3-II/LC3-I and Parkin, culminating in suppressed cell proliferation and accelerated cell senescence and apoptosis. Conversely, the co-treatment with the mitochondrial autophagy inducer carbonyl cyanide m-chlorophenyl hydrazine (CCCP) and HCQ mitigated the detrimental effects of UA on HUVEC autophagy. This intervention led to increased expression of PINK1, Parkin, Bnip3, and Nix, along with enhanced fluorescence of LC3-II/LC3-I and Parkin, effectively inhibiting cell senescence and apoptosis while promoting cell proliferation. In conclusion, our findings underscore the pivotal role of HCQ in modulating UA-mediated vascular endothelial cell damage through the inhibition of mitophagy, providing novel insights into the therapeutic potential of targeting HCQ in the management of hyperuricemia-associated vascular complications.
{"title":"Hyperuricemia Facilitates Uric Acid-Mediated Vascular Endothelial Cell Damage by Inhibiting Mitophagy.","authors":"Gang Wu, Jun Liu, Guirong Ma, Qiuyu Wei, Xinghui Song","doi":"10.1007/s12013-024-01512-5","DOIUrl":"10.1007/s12013-024-01512-5","url":null,"abstract":"<p><p>Hyperuricemia remains an elusive factor in the pathogenesis of vascular endothelial injury. This study elucidates the role of hydroxychloroquine (HCQ) in the context of uric acid (UA)-induced vascular endothelial cell damage. Human umbilical vein endothelial cells (HUVECs) were exposed to varying UA concentrations (6 mg/dL to 50 mg/dL) for 48 h, or to 50 mg/dL UA for different time points (6 to 72 h). We observed a concentration- and time-dependent inhibition of cell proliferation, particularly at 40 mg/dL and 50 mg/dL UA. The autophagy marker LC3 exhibited reduced fluorescence intensity post-UA treatment, along with decreased expression of LC3-II/LC3I, beclin1, and p62, indicating impaired autophagy. The mechanistic exploration revealed that HCQ, in conjunction with the mitochondrial autophagy inhibitor Cyclosporine A (CsA), exacerbated the inhibitory effects of UA on HUVEC autophagy. This was evidenced by a further reduction in mitochondrial autophagy-related proteins and diminished fluorescence of LC3-II/LC3-I and Parkin, culminating in suppressed cell proliferation and accelerated cell senescence and apoptosis. Conversely, the co-treatment with the mitochondrial autophagy inducer carbonyl cyanide m-chlorophenyl hydrazine (CCCP) and HCQ mitigated the detrimental effects of UA on HUVEC autophagy. This intervention led to increased expression of PINK1, Parkin, Bnip3, and Nix, along with enhanced fluorescence of LC3-II/LC3-I and Parkin, effectively inhibiting cell senescence and apoptosis while promoting cell proliferation. In conclusion, our findings underscore the pivotal role of HCQ in modulating UA-mediated vascular endothelial cell damage through the inhibition of mitophagy, providing novel insights into the therapeutic potential of targeting HCQ in the management of hyperuricemia-associated vascular complications.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"811-821"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sulfanilic acid (SFA) crystal is well known as an effective material for photonic, electro-optical, harmonic generating and biomedical applications. A well-known nonlinear optical material, a high-quality SFA single crystal made utilizing the slow evaporation solution method (SEST) is the subject of this article. A 75 days development period yielded a transparent SFA single crystal measuring 5 × 5 × 2 mm3. The grown crystal used for different characterizations like Single crystal XRD used to find out the cell parameters. Fourier transforms infrared utilized to identify the band assignments. UV-Visible analysis used to detect the absorbance of the crystal and it is utilized for optical application. Photoluminescence studies utilized to recognize the excitation and emission of the grown crystal. Fluorescence used for determining the crystallinity and purity of the sample. The quantitative analysis is verified by using Elemental Dispersive Analysis by X-Rays. Scanning Electron Microscopy utilized to identify the structural and morphological characteristics. To the best of our knowledge, this paper is the first to provide the generated crystal that was used to analyze cytotoxicity and larvacidal activity. Assessment of larvicidal activity was used to ascertain the anti-malarial efficacy. We tested the items on MCF7-Human Breast cancer cell line and MCF7 Vero cells using the MTT Assay to identify the molecular basis of their cytotoxicity in vitro. Biological and optical are two areas that could benefit from the created crystal.
{"title":"An Investigation on Optical, Larvacidal and Cytotoxicity Analysis of Sulfanilic Acid Single Crystal for Optical and Biomedical Applications.","authors":"Punithavathi Manogaran, Thirupathy Jayapalan, Revathi Palanisamy","doi":"10.1007/s12013-024-01547-8","DOIUrl":"10.1007/s12013-024-01547-8","url":null,"abstract":"<p><p>Sulfanilic acid (SFA) crystal is well known as an effective material for photonic, electro-optical, harmonic generating and biomedical applications. A well-known nonlinear optical material, a high-quality SFA single crystal made utilizing the slow evaporation solution method (SEST) is the subject of this article. A 75 days development period yielded a transparent SFA single crystal measuring 5 × 5 × 2 mm<sup>3</sup>. The grown crystal used for different characterizations like Single crystal XRD used to find out the cell parameters. Fourier transforms infrared utilized to identify the band assignments. UV-Visible analysis used to detect the absorbance of the crystal and it is utilized for optical application. Photoluminescence studies utilized to recognize the excitation and emission of the grown crystal. Fluorescence used for determining the crystallinity and purity of the sample. The quantitative analysis is verified by using Elemental Dispersive Analysis by X-Rays. Scanning Electron Microscopy utilized to identify the structural and morphological characteristics. To the best of our knowledge, this paper is the first to provide the generated crystal that was used to analyze cytotoxicity and larvacidal activity. Assessment of larvicidal activity was used to ascertain the anti-malarial efficacy. We tested the items on MCF7-Human Breast cancer cell line and MCF7 Vero cells using the MTT Assay to identify the molecular basis of their cytotoxicity in vitro. Biological and optical are two areas that could benefit from the created crystal.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1139-1149"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-09-24DOI: 10.1007/s12013-024-01546-9
Jitender Singh, Krishan Lal Khanduja, Divya Dahiya, Pramod K Avti
Differential expression patterns of growth factor (EGFR, HER-2) and hormonal (ER, PR) receptors in breast cancer (BC) remain crucial for evaluating and tailoring therapeutic interventions. This study investigates differential expression profiles of hormonal and growth factor receptors in BC patients and across age groups, major subclasses, disease stages and tumor histology and survival rates, the efficacy of emerging clinical trial drugs (Dabrafenib and Palbociclib) and elucidating their molecular interaction mechanisms for efficient therapeutic strategies. Gene and protein expression analysis in the normal vs BC and across age groups and major subclasses reveals divergent patterns as EGFR and HER-2 levels are reduced in tumors versus normal tissue, while ER and PR levels are higher, particularly in luminal subtypes. However, there was no significant difference in survival rates among high and low/medium expression levels of EGFR and PR receptors. Conversely, patients with high HER-2 and ER expression exhibited poorer survival rates compared to low or medium expression levels. The in vitro findings indicate that Dabrafenib exhibits greater effectiveness than Palbociclib in suppressing various BC cells such as MCF-7 (Luminal), MDA-MB-231 (Triple-Negative), SKBR-3 (HER-2 + ) proliferation, promoting cell death, (IC50 of Dab < Pal) at 24 and 48 h, ROS production, and reduced ER and PR, elevated HER-2 with no change in EGFR expression. Molecular simulation studies revealed Dabrafenib's thermodynamically stable interactions (ΔG), tighter binding, and less structural deviation in the order EGFR > HER-2 > ER > PR as compared to Palbociclib (HER-2 > ER > PR = EGFR). These results indicate that Dabrafenib, compared to Palbociclib, more effectively regulates breast cancer cell proliferation through specific interactions with hormonal and growth factor receptors towards a repurposing approach.
乳腺癌(BC)中生长因子(表皮生长因子受体、HER-2)和激素(ER、PR)受体的差异表达模式对于评估和调整治疗干预措施至关重要。本研究调查了乳腺癌患者体内激素和生长因子受体的不同表达谱,以及不同年龄组、主要亚类、疾病分期、肿瘤组织学和生存率、新兴临床试验药物(Dabrafenib 和 Palbociclib)的疗效,并阐明其分子相互作用机制,以制定有效的治疗策略。正常组织与 BC 组织的基因和蛋白质表达分析,以及不同年龄组和主要亚类的基因和蛋白质表达分析,揭示了不同的模式,即肿瘤组织中表皮生长因子受体(EGFR)和 HER-2 水平较正常组织低,而 ER 和 PR 水平较高,尤其是在管腔亚型中。不过,表皮生长因子受体和 PR 受体的高表达水平和低/中等表达水平的患者在生存率方面没有明显差异。相反,HER-2和ER高表达患者的存活率比低或中等表达水平的患者低。体外研究结果表明,Dabrafenib比Palbociclib更能抑制MCF-7(Luminal)、MDA-MB-231(Triple-Negative)、SKBR-3(HER-2 +)等多种BC细胞的增殖,促进细胞死亡(Dab的IC50小于Pal)(24小时和48小时)、ROS产生、降低ER和PR、升高HER-2,而EGFR表达无变化。分子模拟研究显示,与 Palbociclib(HER-2 > ER > PR = EGFR)相比,Dabrafenib 的相互作用(ΔG)热力学稳定,结合更紧密,EGFR > HER-2 > ER > PR 的结构偏差更小。这些结果表明,与 Palbociclib 相比,Dabrafenib 能通过与激素和生长因子受体的特异性相互作用,更有效地调节乳腺癌细胞的增殖,从而实现再利用。
{"title":"Mechanistic Regulation of Epidermal Growth Factor and Hormonal Receptors by Kinase Inhibitors and Organofluorines in Breast Cancer Therapy.","authors":"Jitender Singh, Krishan Lal Khanduja, Divya Dahiya, Pramod K Avti","doi":"10.1007/s12013-024-01546-9","DOIUrl":"10.1007/s12013-024-01546-9","url":null,"abstract":"<p><p>Differential expression patterns of growth factor (EGFR, HER-2) and hormonal (ER, PR) receptors in breast cancer (BC) remain crucial for evaluating and tailoring therapeutic interventions. This study investigates differential expression profiles of hormonal and growth factor receptors in BC patients and across age groups, major subclasses, disease stages and tumor histology and survival rates, the efficacy of emerging clinical trial drugs (Dabrafenib and Palbociclib) and elucidating their molecular interaction mechanisms for efficient therapeutic strategies. Gene and protein expression analysis in the normal vs BC and across age groups and major subclasses reveals divergent patterns as EGFR and HER-2 levels are reduced in tumors versus normal tissue, while ER and PR levels are higher, particularly in luminal subtypes. However, there was no significant difference in survival rates among high and low/medium expression levels of EGFR and PR receptors. Conversely, patients with high HER-2 and ER expression exhibited poorer survival rates compared to low or medium expression levels. The in vitro findings indicate that Dabrafenib exhibits greater effectiveness than Palbociclib in suppressing various BC cells such as MCF-7 (Luminal), MDA-MB-231 (Triple-Negative), SKBR-3 (HER-2 + ) proliferation, promoting cell death, (IC<sub>50</sub> of Dab < Pal) at 24 and 48 h, ROS production, and reduced ER and PR, elevated HER-2 with no change in EGFR expression. Molecular simulation studies revealed Dabrafenib's thermodynamically stable interactions (ΔG), tighter binding, and less structural deviation in the order EGFR > HER-2 > ER > PR as compared to Palbociclib (HER-2 > ER > PR = EGFR). These results indicate that Dabrafenib, compared to Palbociclib, more effectively regulates breast cancer cell proliferation through specific interactions with hormonal and growth factor receptors towards a repurposing approach.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1113-1137"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01DOI: 10.1007/s12013-024-01490-8
Fariya Khan, Altaf Ahmad Shah, Ajay Kumar, Salman Akhtar
{"title":"Correction: In Silico Investigation against Inhibitors of Alpha-Amylase Using Structure-based Screening, Molecular Docking, and Molecular Simulations Studies.","authors":"Fariya Khan, Altaf Ahmad Shah, Ajay Kumar, Salman Akhtar","doi":"10.1007/s12013-024-01490-8","DOIUrl":"10.1007/s12013-024-01490-8","url":null,"abstract":"","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1323"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteoarthritis (OA) is a prevalent joint disease affecting orthopedic patients. Its incidence is steadily increasing, causing great economic hardship for individuals and society as a whole. OA is connected with risk factors such as genetics, obesity, and joint diseases; yet, its pathophysiology is still largely understood. At present, several cell death pathways govern the initiation and advancement of OA. It has been discovered that the onset and progression of OA are strongly associated with pyroptosis, senescence, apoptosis, ferroptosis, and autophagy. Ferroptosis and autophagy have not been well studied in OA, and elucidating their molecular mechanisms in chondrocytes is important for the diagnosis of OA. For this reason, we aim was reviewed recent national and international developments and provided an initial understanding of the molecular pathways underlying autophagy and ferroptosis in OA. We determined the reference period to be the last five years by searching for the keywords "osteoarthritis, mechanical stress, Pizeo1, ferroptosis, autophagy, ferritin autophagy" in the three databases of PUBMED, Web of Science, Google Scholar. We then screened irrelevant literature by reading the abstracts. Ferroptosis is a type of programmed cell death that is dependent on reactive oxygen species and Fe2+. It is primarily caused by processes linked to amino acid metabolism, lipid peroxidation, and iron metabolism. Furthermore, Piezoelectric mechanically sensitive ion channel assembly 1 (PIEZO1), which is triggered by mechanical stress, has been revealed to be intimately associated with ferroptosis events. It was found that mechanical injury triggers changes in the intracellular environment of articular chondrocytes (e.g., elevated levels of oxidative stress and increased inflammation) through PIEZO1, ultimately leading to iron death in chondrocytes. Therefore, we believe that PIEZO1 is a key initiator protein of iron death in chondrocytes. Widely present in eukaryotic cells, autophagy is a lysosome-dependent, evolutionarily conserved catabolic process that carries misfolded proteins, damaged organelles, and other macromolecules to lysosomes for breakdown and recycling. Throughout OA, autophagy is activated to differing degrees, indicating that autophagy may play a role in the development of OA. According to recent research, autophagy is a major factor in the process that leads cells to ferroptosis. Despite the notion of ferritinophagy being put forth, not much research has been done to clarify the connection between ferroptosis and autophagy in OA.
骨关节炎(OA)是影响骨科患者的一种常见关节疾病。其发病率正在稳步上升,给个人和整个社会造成了巨大的经济损失。OA 与遗传、肥胖和关节疾病等风险因素有关,但其病理生理学仍在很大程度上为人所知。目前,有几种细胞死亡途径控制着 OA 的发生和发展。研究发现,OA 的发生和发展与热凋亡、衰老、细胞凋亡、铁凋亡和自噬密切相关。目前尚未对 OA 中的铁变性和自噬进行深入研究,而阐明它们在软骨细胞中的分子机制对于诊断 OA 非常重要。为此,我们回顾了最近国内外的研究进展,并初步了解了 OA 中自噬和铁突变的分子途径。我们通过在 PUBMED、Web of Science 和 Google Scholar 三个数据库中搜索关键词 "骨关节炎、机械应力、Pizeo1、铁蛋白沉积、自噬、铁蛋白自噬",确定参考期为最近五年。然后,我们通过阅读摘要对无关文献进行了筛选。铁蛋白自噬是一种依赖于活性氧和 Fe2+ 的程序性细胞死亡。它主要是由氨基酸代谢、脂质过氧化和铁代谢过程引起的。此外,压电机械敏感离子通道组装 1(PIEZO1)由机械应力触发,已被发现与铁突变事件密切相关。研究发现,机械损伤通过 PIEZO1 触发了关节软骨细胞内环境的变化(如氧化应激水平升高和炎症加剧),最终导致软骨细胞中铁的死亡。因此,我们认为 PIEZO1 是软骨细胞铁死亡的关键启动蛋白。自噬广泛存在于真核细胞中,是一种依赖溶酶体、进化保守的分解代谢过程,它将折叠错误的蛋白质、受损的细胞器和其他大分子带到溶酶体中进行分解和再循环。在整个 OA 过程中,自噬都会在不同程度上被激活,这表明自噬可能在 OA 的发展过程中起着一定的作用。根据最新研究,自噬是导致细胞铁蛋白沉积过程的一个主要因素。尽管有人提出了噬铁蛋白的概念,但并没有太多的研究来阐明 OA 中的铁突变和自噬之间的联系。
{"title":"Chondrocyte Ferritinophagy as a Molecular Mechanism of Arthritis-A Narrative Review.","authors":"Yong Liu, Chao Song, Silong Gao, Daqian Zhou, Jiale Lv, Yang Zhou, Liquan Wang, Houyin Shi, Fei Liu, Zhongwei Xiong, Yunqing Hou, Zongchao Liu","doi":"10.1007/s12013-024-01534-z","DOIUrl":"10.1007/s12013-024-01534-z","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a prevalent joint disease affecting orthopedic patients. Its incidence is steadily increasing, causing great economic hardship for individuals and society as a whole. OA is connected with risk factors such as genetics, obesity, and joint diseases; yet, its pathophysiology is still largely understood. At present, several cell death pathways govern the initiation and advancement of OA. It has been discovered that the onset and progression of OA are strongly associated with pyroptosis, senescence, apoptosis, ferroptosis, and autophagy. Ferroptosis and autophagy have not been well studied in OA, and elucidating their molecular mechanisms in chondrocytes is important for the diagnosis of OA. For this reason, we aim was reviewed recent national and international developments and provided an initial understanding of the molecular pathways underlying autophagy and ferroptosis in OA. We determined the reference period to be the last five years by searching for the keywords \"osteoarthritis, mechanical stress, Pizeo1, ferroptosis, autophagy, ferritin autophagy\" in the three databases of PUBMED, Web of Science, Google Scholar. We then screened irrelevant literature by reading the abstracts. Ferroptosis is a type of programmed cell death that is dependent on reactive oxygen species and Fe<sup>2+</sup>. It is primarily caused by processes linked to amino acid metabolism, lipid peroxidation, and iron metabolism. Furthermore, Piezoelectric mechanically sensitive ion channel assembly 1 (PIEZO1), which is triggered by mechanical stress, has been revealed to be intimately associated with ferroptosis events. It was found that mechanical injury triggers changes in the intracellular environment of articular chondrocytes (e.g., elevated levels of oxidative stress and increased inflammation) through PIEZO1, ultimately leading to iron death in chondrocytes. Therefore, we believe that PIEZO1 is a key initiator protein of iron death in chondrocytes. Widely present in eukaryotic cells, autophagy is a lysosome-dependent, evolutionarily conserved catabolic process that carries misfolded proteins, damaged organelles, and other macromolecules to lysosomes for breakdown and recycling. Throughout OA, autophagy is activated to differing degrees, indicating that autophagy may play a role in the development of OA. According to recent research, autophagy is a major factor in the process that leads cells to ferroptosis. Despite the notion of ferritinophagy being put forth, not much research has been done to clarify the connection between ferroptosis and autophagy in OA.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1021-1033"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-09-20DOI: 10.1007/s12013-024-01524-1
Xueyong Li, Cuixia Liu, Yi Gao
Gastric cancer (GC) is a malignant tumor with high incidence rate. H3K9me3 is related to transcriptional suppression and modulated by histone methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39H1). SUV39H1 is dysregulated in assorted cancers and exerts the regulatory function. Nevertheless, the specific biofunction of SUV39H1 in GC needs further confirmation. SUV39H1 and H3K9me3 expressions were tested through RT-qPCR and western blot. Colony formation, wound healing, and transwell assays were employed for testing cell behaviors. ChIP assay was utilized for assessing the interaction between H3K9me3 and aldolase B (ALDOB). Xenograft experiment was employed for measuring tumor growth. We found that SUV39H1 and H3K9me3 were overexpressed in GC tissues and cells. SUV39H1 knockdown notably suppressed GC cell proliferative, migratory, and invasive capabilities. The treatment of chaetocin or F5446 (inhibitors of SUV39H1 enzymatic activity) also restrained GC cell behaviors. In addition, we discovered that SUV39H1 could negatively regulate ALDOB expression. SUV39H1 depletion reduced H3K9me3 modification to ALDOB promoter region. In rescue assays, we proved that ALDOB reduction reversed the inhibitory functions of SUV39H1 silencing on GC progression. Furthermore, tumor growth of mice was suppressed by sh-SUV39H1 transfection, chaetocin treatment, or F5446 treatment. In conclusion, SUV39H1 promoted GC progression by modulating the H3K9me3/ALDOB axis.
{"title":"SUV39H1 Regulates Gastric Cancer Progression via the H3K9me3/ALDOB Axis.","authors":"Xueyong Li, Cuixia Liu, Yi Gao","doi":"10.1007/s12013-024-01524-1","DOIUrl":"10.1007/s12013-024-01524-1","url":null,"abstract":"<p><p>Gastric cancer (GC) is a malignant tumor with high incidence rate. H3K9me3 is related to transcriptional suppression and modulated by histone methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39H1). SUV39H1 is dysregulated in assorted cancers and exerts the regulatory function. Nevertheless, the specific biofunction of SUV39H1 in GC needs further confirmation. SUV39H1 and H3K9me3 expressions were tested through RT-qPCR and western blot. Colony formation, wound healing, and transwell assays were employed for testing cell behaviors. ChIP assay was utilized for assessing the interaction between H3K9me3 and aldolase B (ALDOB). Xenograft experiment was employed for measuring tumor growth. We found that SUV39H1 and H3K9me3 were overexpressed in GC tissues and cells. SUV39H1 knockdown notably suppressed GC cell proliferative, migratory, and invasive capabilities. The treatment of chaetocin or F5446 (inhibitors of SUV39H1 enzymatic activity) also restrained GC cell behaviors. In addition, we discovered that SUV39H1 could negatively regulate ALDOB expression. SUV39H1 depletion reduced H3K9me3 modification to ALDOB promoter region. In rescue assays, we proved that ALDOB reduction reversed the inhibitory functions of SUV39H1 silencing on GC progression. Furthermore, tumor growth of mice was suppressed by sh-SUV39H1 transfection, chaetocin treatment, or F5446 treatment. In conclusion, SUV39H1 promoted GC progression by modulating the H3K9me3/ALDOB axis.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"919-928"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-09-24DOI: 10.1007/s12013-024-01544-x
Lei Liu, Hao Zhang, Siming Chen, Wankang Dian, Zhou Zheng
Alveolar epithelial cell injury plays a key role in acute lung injury (ALI) and is a vital determinant of its severity. Here, we aimed to assess the protective effects of cinnamaldehyde (CA) on lipopolysaccharide (LPS)-induced A549 cells and elucidate the underlying mechanisms. A549 cells were stimulated with 1 μg/mL LPS for 24 h to establish an alveolar epithelial cell injury model and subsequently treated with CA or Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and lactate dehydrogenase release assays were used to evaluate apoptosis, cell viability, and lactate dehydrogenase activity, respectively. Levels of inflammatory cytokines (interleukin-6, interleukin-1β, tumor necrosis tactor-α, and interferon-γ) and oxidative stress markers (reactive oxygen species, superoxide dismutase, catalase, and malondialdehyde) were determined using enzyme-linked immunosorbent assay and specific assay kits, respectively. Furthermore, levels of apoptosis-related proteins (cleaved caspase-3, Bcl-2-associated X, and Bcl-2) and CaMKII were assessed via western blotting. CA did not exhibit significant cytotoxicity in A549 cells. It dose-dependently improved the cell viability, suppressed apoptosis, decreased cleaved caspase-3 and Bcl-2-associated X levels, and increased Bcl-2 levels in LPS-treated A549 cells. It also inhibited inflammatory factor release and oxidative stress in LPS-induced A549 cells. Similar results were observed in the KN93- and CA-treated groups. Western blotting assay revealed that CA and KN93 inhibited CaMKII pathway activation, as indicated by the reduced p-CaMKII and p-phospholamban (PLN) levels and p-CaMKII/CaMKII and p-PLN/PLN ratios. Overall, CA alleviated alveolar epithelial cell injury by inhibiting the inflammatory response and oxidative stress and inducing cell apoptosis in LPS-induced A549 cells by regulating the CaMKII pathway, serving as a potential candidate for ALI prevention and treatment.
{"title":"Cinnamaldehyde Alleviates Alveolar Epithelial Cell Injury in ALI by Inhibiting the CaMKII Pathway.","authors":"Lei Liu, Hao Zhang, Siming Chen, Wankang Dian, Zhou Zheng","doi":"10.1007/s12013-024-01544-x","DOIUrl":"10.1007/s12013-024-01544-x","url":null,"abstract":"<p><p>Alveolar epithelial cell injury plays a key role in acute lung injury (ALI) and is a vital determinant of its severity. Here, we aimed to assess the protective effects of cinnamaldehyde (CA) on lipopolysaccharide (LPS)-induced A549 cells and elucidate the underlying mechanisms. A549 cells were stimulated with 1 μg/mL LPS for 24 h to establish an alveolar epithelial cell injury model and subsequently treated with CA or Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and lactate dehydrogenase release assays were used to evaluate apoptosis, cell viability, and lactate dehydrogenase activity, respectively. Levels of inflammatory cytokines (interleukin-6, interleukin-1β, tumor necrosis tactor-α, and interferon-γ) and oxidative stress markers (reactive oxygen species, superoxide dismutase, catalase, and malondialdehyde) were determined using enzyme-linked immunosorbent assay and specific assay kits, respectively. Furthermore, levels of apoptosis-related proteins (cleaved caspase-3, Bcl-2-associated X, and Bcl-2) and CaMKII were assessed via western blotting. CA did not exhibit significant cytotoxicity in A549 cells. It dose-dependently improved the cell viability, suppressed apoptosis, decreased cleaved caspase-3 and Bcl-2-associated X levels, and increased Bcl-2 levels in LPS-treated A549 cells. It also inhibited inflammatory factor release and oxidative stress in LPS-induced A549 cells. Similar results were observed in the KN93- and CA-treated groups. Western blotting assay revealed that CA and KN93 inhibited CaMKII pathway activation, as indicated by the reduced p-CaMKII and p-phospholamban (PLN) levels and p-CaMKII/CaMKII and p-PLN/PLN ratios. Overall, CA alleviated alveolar epithelial cell injury by inhibiting the inflammatory response and oxidative stress and inducing cell apoptosis in LPS-induced A549 cells by regulating the CaMKII pathway, serving as a potential candidate for ALI prevention and treatment.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1097-1104"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-11-25DOI: 10.1007/s12013-024-01553-w
Sharika Noshin, Rahul Dev Bairagi, Sadia Airin, Dipa Debnath, Md Sohanur Rahaman, Amit Kumar Acharzo, Most Nazmin Aktar, Mohammed Bourhia, Ahmad Mohammad Salamatullah, Md Amirul Islam
The mangrove fungi provide a vast and unexplored source of diverse and unique chemicals and biological properties. The plant Aegiceras corniculatum (L.) Blanco and its endophytic fungus aspergillus species were collected from different sites of the Baleswar river region in Sundarban. Hence, we compared the antioxidant properties of the associated fungus ACSF-1 and the methanolic bark extract of Aegiceras corniculatum (MBAC) by measuring the total phenolic content (TPC), total flavonoid content (TFC), and DPPH free radical assay. Subsequently, antimicrobial activity was measured using the disc diffusion method, and cytotoxic activity was measured using the brine shrimp lethality bioassay. The results showed that MBAC has even more DPPH scavenging activity (IC50 = 44.036 μg/mL), TPC (310.275 mg GAE/g), and TFC (66.275 mg QE/g) in comparison with DPPH scavenging activity (IC50 = 92.542 μg/mL), TPC (234.832 mg GAE/g), and TFC (134.887 mg QE/g) in ACSF-1. The median lethal concentration value (LC50) of MBAC and ACSF-1 was found to be 43.93 μg/mL and 336.84 μg/mL, respectively. Moreover, MBAC showed a dose-dependent antimicrobial response to Escherichia coli and Staphylococcus aureus, whereas ACSF-1 was found to have activity against Bacillus subtilis and S. aureus. These results emphasize the unique pharmacological characteristics of both the plant and fungus, indicating their potential usefulness in various therapeutic fields.
{"title":"Synergistic Bioactivity of Aegiceras corniculatum (L.) Blanco and Its Endophytic Fungus Aspergillus: Antioxidant, Antimicrobial, and Cytotoxic Effects.","authors":"Sharika Noshin, Rahul Dev Bairagi, Sadia Airin, Dipa Debnath, Md Sohanur Rahaman, Amit Kumar Acharzo, Most Nazmin Aktar, Mohammed Bourhia, Ahmad Mohammad Salamatullah, Md Amirul Islam","doi":"10.1007/s12013-024-01553-w","DOIUrl":"10.1007/s12013-024-01553-w","url":null,"abstract":"<p><p>The mangrove fungi provide a vast and unexplored source of diverse and unique chemicals and biological properties. The plant Aegiceras corniculatum (L.) Blanco and its endophytic fungus aspergillus species were collected from different sites of the Baleswar river region in Sundarban. Hence, we compared the antioxidant properties of the associated fungus ACSF-1 and the methanolic bark extract of Aegiceras corniculatum (MBAC) by measuring the total phenolic content (TPC), total flavonoid content (TFC), and DPPH free radical assay. Subsequently, antimicrobial activity was measured using the disc diffusion method, and cytotoxic activity was measured using the brine shrimp lethality bioassay. The results showed that MBAC has even more DPPH scavenging activity (IC<sub>50</sub> = 44.036 μg/mL), TPC (310.275 mg GAE/g), and TFC (66.275 mg QE/g) in comparison with DPPH scavenging activity (IC<sub>50</sub> = 92.542 μg/mL), TPC (234.832 mg GAE/g), and TFC (134.887 mg QE/g) in ACSF-1. The median lethal concentration value (LC<sub>50</sub>) of MBAC and ACSF-1 was found to be 43.93 μg/mL and 336.84 μg/mL, respectively. Moreover, MBAC showed a dose-dependent antimicrobial response to Escherichia coli and Staphylococcus aureus, whereas ACSF-1 was found to have activity against Bacillus subtilis and S. aureus. These results emphasize the unique pharmacological characteristics of both the plant and fungus, indicating their potential usefulness in various therapeutic fields.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1197-1206"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemotherapy is increasingly being used in the first-line treatment of endometrial cancer (EC) patients. However, chemoresistance seriously affects its efficacy. Understanding the underlying molecular mechanisms is critical for EC treatment. We explored the regulatory role of T-Box transcription factor 2 (TBX2)-ferroptosis suppressor protein 1 (FSP1) axis in ferroptosis and chemoresistance of EC. Cisplatin-resistant cell line Ishikawa/DDP cells were utilized to generate TBX2 and FSP1 overexpression and knockdown stable cell lines by using lentivirus infection and puromycin selection. Cell viability and ferroptosis status were evaluated in EC cells with or without Cisplatin and/or FSP1 inhibitor (iFSP1) using CKK-8, lipid peroxidation, malondialdehyde, and lactate dehydrogenase release assays. Endometrial carcinoma xenograft mouse model was established to further explore the function of TBX2-FSP1 axis on ferroptosis and tumor progression in EC. TBX2 suppressed Cisplatin-induced ferroptosis through up-regulating FSP1 expression level in EC cells. On the contrary, knockdown of TBX2 reduced FSP1 expression and significantly promoted Cisplatin-induced ferroptosis. TBX2 or FSP1 overexpression and knockdown promote and inhibit EC tumor growth under Cisplatin treatment, respectively. Interestingly, silence FSP1 could reverse TBX2-mediated ferroptosis inhibition and tumor-promoting effect. TBX2-FSP1 axis inhibits ferroptosis and enhances the Cisplatin resistance, which will provide an important theoretical basis and potential solution for the clinical treatment of EC.
{"title":"T-Box Transcription Factor 2 Mediates Chemoresistance of Endometrial Cancer via Regulating FSP1-involved Ferroptosis.","authors":"Xiaohui Yu, Xuemei Yao, Fangfang Song, Xiaolin Zhu","doi":"10.1007/s12013-024-01518-z","DOIUrl":"10.1007/s12013-024-01518-z","url":null,"abstract":"<p><p>Chemotherapy is increasingly being used in the first-line treatment of endometrial cancer (EC) patients. However, chemoresistance seriously affects its efficacy. Understanding the underlying molecular mechanisms is critical for EC treatment. We explored the regulatory role of T-Box transcription factor 2 (TBX2)-ferroptosis suppressor protein 1 (FSP1) axis in ferroptosis and chemoresistance of EC. Cisplatin-resistant cell line Ishikawa/DDP cells were utilized to generate TBX2 and FSP1 overexpression and knockdown stable cell lines by using lentivirus infection and puromycin selection. Cell viability and ferroptosis status were evaluated in EC cells with or without Cisplatin and/or FSP1 inhibitor (iFSP1) using CKK-8, lipid peroxidation, malondialdehyde, and lactate dehydrogenase release assays. Endometrial carcinoma xenograft mouse model was established to further explore the function of TBX2-FSP1 axis on ferroptosis and tumor progression in EC. TBX2 suppressed Cisplatin-induced ferroptosis through up-regulating FSP1 expression level in EC cells. On the contrary, knockdown of TBX2 reduced FSP1 expression and significantly promoted Cisplatin-induced ferroptosis. TBX2 or FSP1 overexpression and knockdown promote and inhibit EC tumor growth under Cisplatin treatment, respectively. Interestingly, silence FSP1 could reverse TBX2-mediated ferroptosis inhibition and tumor-promoting effect. TBX2-FSP1 axis inhibits ferroptosis and enhances the Cisplatin resistance, which will provide an important theoretical basis and potential solution for the clinical treatment of EC.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1313-1320"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-10-09DOI: 10.1007/s12013-024-01557-6
Chenhui Wang, Wu Xia
Liver cancer ranks third in global cancer-related mortality, with about 700,000 deaths recorded yearly, making it one of the most common cancers worldwide. Even though prognoses differ according to the severity of the diseases, many patients now exhibit an increased life cycle since the implementation of chemotherapy. In the current study, we investigated the effect of proanthocyanidin ‒a polyphenol molecule found in many plants‒ on the proliferation and invasion of liver cancer cells. In particular, we determined the effect of proanthocyanidin on the serum levels of four strategic liver cancer target, TNFα, IL-6, cfDNA, and IL-1β. Further molecular insight on the inhibitory mechanism of proanthocyanidin against TNFα, IL-6, and IL-1β was obtained via molecular docking, molecular dynamics simulations and binding free energy calculations. Results showed that proanthocyanidin inhibited the growth of HepG2 and HEP3B cells, and effectively reduced clonogenic survival and invasion potential when compared to control cells. Proanthocyanidin was also found to suppress the expression of Bcl-2 (26 kDa) protein in HepG2 cells, while increasing the expression of Bax (21 kDa). Molecular dynamics (MD) and thermodynamic binding free energy calculations showed that proanthocyanidin maintained stable binding within the active site of target proteins across the entire 100 ns MD simulation period, and its binding affinity outscored respective control molecules.In conclusion, the multifaceted analysis showcased in this study demonstrated promising anti-cancer effect of proanthocyanidin on HepG2 and HEP3B cancer cells, highlighting its potential as a viable liver cancer therapeutic alternative.
{"title":"Proanthocyanidin Regulates NETosis and Inhibits the Growth and Proliferation of Liver Cancer Cells - In Vivo, In Vitro and In Silico Investigation.","authors":"Chenhui Wang, Wu Xia","doi":"10.1007/s12013-024-01557-6","DOIUrl":"10.1007/s12013-024-01557-6","url":null,"abstract":"<p><p>Liver cancer ranks third in global cancer-related mortality, with about 700,000 deaths recorded yearly, making it one of the most common cancers worldwide. Even though prognoses differ according to the severity of the diseases, many patients now exhibit an increased life cycle since the implementation of chemotherapy. In the current study, we investigated the effect of proanthocyanidin ‒a polyphenol molecule found in many plants‒ on the proliferation and invasion of liver cancer cells. In particular, we determined the effect of proanthocyanidin on the serum levels of four strategic liver cancer target, TNFα, IL-6, cfDNA, and IL-1β. Further molecular insight on the inhibitory mechanism of proanthocyanidin against TNFα, IL-6, and IL-1β was obtained via molecular docking, molecular dynamics simulations and binding free energy calculations. Results showed that proanthocyanidin inhibited the growth of HepG2 and HEP3B cells, and effectively reduced clonogenic survival and invasion potential when compared to control cells. Proanthocyanidin was also found to suppress the expression of Bcl-2 (26 kDa) protein in HepG2 cells, while increasing the expression of Bax (21 kDa). Molecular dynamics (MD) and thermodynamic binding free energy calculations showed that proanthocyanidin maintained stable binding within the active site of target proteins across the entire 100 ns MD simulation period, and its binding affinity outscored respective control molecules.In conclusion, the multifaceted analysis showcased in this study demonstrated promising anti-cancer effect of proanthocyanidin on HepG2 and HEP3B cancer cells, highlighting its potential as a viable liver cancer therapeutic alternative.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1223-1235"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}