Annapurneshwari M Hongal, Arun K Shettar, Joy H Hoskeri, A B Vedamurthy
{"title":"Silver nanoparticles mediated apoptosis and cell cycle arrest in lung cancer A549.","authors":"Annapurneshwari M Hongal, Arun K Shettar, Joy H Hoskeri, A B Vedamurthy","doi":"10.1007/s13205-024-04064-w","DOIUrl":null,"url":null,"abstract":"<p><p>The present study was aimed to synthesize the silver nanoparticles from <i>Alangium salvifolium</i> Wang. and evaluating its biomedical applications. The leaves of <i>A. salvifolium</i> collected and subjected for the standard procedure of Soxhlet extraction using distilled water as a solvent. With the help of an aqueous extract AgNPs were synthesized from silver nitrate using phyto-reduction method. Further, synthesized AgNPs were characterized using several analytical techniques such as UV, FTIR, SEM-EDX, XRD, particles size and zeta potential. Synthesized AgNPs were tested for antibacterial, antioxidant, anticancer for lung cancer cell line and flowcytometry-based pathway studies. The visual observation confirmed the formation of AgNPs from the aqueous extract by changing yellow to brown colour formation. Further, characterization techniques also confirmed the formation of AgNPs. Antibacterial activity results showed that the tested AgNPs were potent against bacterial pathogens with a higher zone of inhibition. Further, the antioxidant and anticancer activity of AgNPs revealed that the AgNPs have exhibited significant results with a good percentage of inhibition. Further, the flow cytometry studies confirmed that the AgNPs inducing apoptosis and cell cycle arrest in lung cancer. The phytochemicals of <i>A. salvifolium</i> plant have successfully synthesized AgNPs. In the case of performed biological activity, the synthesized silver nanoparticles exhibited potent activity. In future these AgNPs can be taken for molecular and in vivo studies to identify their efficacy using in vivo and molecular models.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 10","pages":"238"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415561/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04064-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was aimed to synthesize the silver nanoparticles from Alangium salvifolium Wang. and evaluating its biomedical applications. The leaves of A. salvifolium collected and subjected for the standard procedure of Soxhlet extraction using distilled water as a solvent. With the help of an aqueous extract AgNPs were synthesized from silver nitrate using phyto-reduction method. Further, synthesized AgNPs were characterized using several analytical techniques such as UV, FTIR, SEM-EDX, XRD, particles size and zeta potential. Synthesized AgNPs were tested for antibacterial, antioxidant, anticancer for lung cancer cell line and flowcytometry-based pathway studies. The visual observation confirmed the formation of AgNPs from the aqueous extract by changing yellow to brown colour formation. Further, characterization techniques also confirmed the formation of AgNPs. Antibacterial activity results showed that the tested AgNPs were potent against bacterial pathogens with a higher zone of inhibition. Further, the antioxidant and anticancer activity of AgNPs revealed that the AgNPs have exhibited significant results with a good percentage of inhibition. Further, the flow cytometry studies confirmed that the AgNPs inducing apoptosis and cell cycle arrest in lung cancer. The phytochemicals of A. salvifolium plant have successfully synthesized AgNPs. In the case of performed biological activity, the synthesized silver nanoparticles exhibited potent activity. In future these AgNPs can be taken for molecular and in vivo studies to identify their efficacy using in vivo and molecular models.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.