Exosomal miR-664a-5p as a therapeutic target biomarker for PARP inhibitor response in prostate cancer.

IF 3.6 3区 医学 Q2 ONCOLOGY American journal of cancer research Pub Date : 2024-08-25 eCollection Date: 2024-01-01 DOI:10.62347/QYZS2620
Mee Young Kim, Hyong Woo Moon, Min Soo Jo, Ji Youl Lee
{"title":"Exosomal miR-664a-5p as a therapeutic target biomarker for PARP inhibitor response in prostate cancer.","authors":"Mee Young Kim, Hyong Woo Moon, Min Soo Jo, Ji Youl Lee","doi":"10.62347/QYZS2620","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the role of urinary exosomal miR-664a-5p as a potential therapeutic target in prostate cancer (PCa). Small RNA sequencing of urinary exosomes from PCa patients with different responses to PARP inhibitors revealed that miR-664a-5p was significantly upregulated in responsive patients. Overexpression of miR-664a-5p enhanced the sensitivity of PCa cells to PARP inhibitors by directly targeting FOXM1, a transcription factor involved in DNA damage repair, leading to the downregulation of DNA damage response genes. Combined treatment with miR-664a-5p and olaparib synergistically inhibited tumor growth in a PC-3 xenograft mouse model. These findings suggest that urinary exosomal miR-664a-5p is a potential therapeutic biomarker for PARP inhibitor response in PCa patients, and targeting FOXM1 via miR-664a-5p represents a promising strategy for enhancing PARP inhibitor efficacy in PCa treatment.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 8","pages":"3789-3799"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387859/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/QYZS2620","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the role of urinary exosomal miR-664a-5p as a potential therapeutic target in prostate cancer (PCa). Small RNA sequencing of urinary exosomes from PCa patients with different responses to PARP inhibitors revealed that miR-664a-5p was significantly upregulated in responsive patients. Overexpression of miR-664a-5p enhanced the sensitivity of PCa cells to PARP inhibitors by directly targeting FOXM1, a transcription factor involved in DNA damage repair, leading to the downregulation of DNA damage response genes. Combined treatment with miR-664a-5p and olaparib synergistically inhibited tumor growth in a PC-3 xenograft mouse model. These findings suggest that urinary exosomal miR-664a-5p is a potential therapeutic biomarker for PARP inhibitor response in PCa patients, and targeting FOXM1 via miR-664a-5p represents a promising strategy for enhancing PARP inhibitor efficacy in PCa treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外泌体 miR-664a-5p 作为前列腺癌 PARP 抑制剂反应的治疗目标生物标记物。
这项研究探讨了尿液外泌体 miR-664a-5p 作为前列腺癌(PCa)潜在治疗靶点的作用。对PARP抑制剂反应不同的PCa患者的尿液外泌体进行小RNA测序发现,miR-664a-5p在有反应的患者中显著上调。通过直接靶向参与DNA损伤修复的转录因子FOXM1,导致DNA损伤应答基因下调,过表达miR-664a-5p增强了PCa细胞对PARP抑制剂的敏感性。在PC-3异种移植小鼠模型中,miR-664a-5p和奥拉帕利联合治疗可协同抑制肿瘤生长。这些研究结果表明,尿液外泌体 miR-664a-5p 是 PCa 患者 PARP 抑制剂反应的潜在治疗生物标志物,通过 miR-664a-5p 靶向 FOXM1 是提高 PARP 抑制剂在 PCa 治疗中疗效的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
3.80%
发文量
263
期刊介绍: The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.
期刊最新文献
Analysis of risk factors affecting the prognosis of angiosarcoma patients: a retrospective study. AMP-dependent protein kinase alpha 1 predicts cancer prognosis and immunotherapy response: from pan-cancer analysis to experimental validation. Erratum: Targeting NF-κB/AP-2β signaling to enhance antitumor activity of cisplatin by melatonin in hepatocellular carcinoma cells. Evodiamine exerts anti-cancer activity including growth inhibition, cell cycle arrest, and apoptosis induction in human follicular thyroid cancers. Generation and banking of patient-derived glioblastoma organoid and its application in cancer neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1