Bayes beyond the predictive distribution.

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-09-23 DOI:10.1017/S0140525X24000086
Anna Székely, Gergő Orbán
{"title":"Bayes beyond the predictive distribution.","authors":"Anna Székely, Gergő Orbán","doi":"10.1017/S0140525X24000086","DOIUrl":null,"url":null,"abstract":"<p><p>Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/S0140525X24000086","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Binz et al. argue that meta-learned models offer a new paradigm to study human cognition. Meta-learned models are proposed as alternatives to Bayesian models based on their capability to learn identical posterior predictive distributions. In our commentary, we highlight several arguments that reach beyond a predictive distribution-based comparison, offering new perspectives to evaluate the advantages of these modeling paradigms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯超越了预测分布。
Binz 等人认为,元学习模型为研究人类认知提供了一种新的范式。元学习模型能够学习相同的后验预测分布,因此被认为是贝叶斯模型的替代品。在我们的评论中,我们强调了几个超越基于预测分布的比较的论点,为评估这些建模范式的优势提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Inorganic CsSnI3 Perovskite Solar Cells with an Efficiency above 13.6% Recent Advances in Modification Strategies and Renewable Energy Applications of Tungsten-based Nanomaterials Pyro-phototronic Effect in Colloidal Quantum Dots on Silicon Heterojunction for High-detectivity Infrared Photodetectors FAPbI3-Nanoparticles with ligands act synergistically in absorbent layers for high-performance and stable FAPbI3 based perovskite solar cells miRNATissueAtlas 2025: an update to the uniformly processed and annotated human and mouse non-coding RNA tissue atlas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1