Photocatalytic methane oxidation over a TiO2/SiNWs p-n junction catalyst at room temperature.

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Beilstein Journal of Nanotechnology Pub Date : 2024-09-02 eCollection Date: 2024-01-01 DOI:10.3762/bjnano.15.92
Qui Thanh Hoai Ta, Luan Minh Nguyen, Ngoc Hoi Nguyen, Phan Khanh Thinh Nguyen, Dai Hai Nguyen
{"title":"Photocatalytic methane oxidation over a TiO<sub>2</sub>/SiNWs p-n junction catalyst at room temperature.","authors":"Qui Thanh Hoai Ta, Luan Minh Nguyen, Ngoc Hoi Nguyen, Phan Khanh Thinh Nguyen, Dai Hai Nguyen","doi":"10.3762/bjnano.15.92","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid recombination of charge carriers in semiconductors is a main drawback for photocatalytic oxidative coupling of methane (OCM) reactions. Herein, we propose a novel catalyst by developing a p-n junction titania-silicon nanowires (TiO<sub>2</sub>/SiNWs) heterostructure. The structure is fabricated by atomic layer deposition of TiO<sub>2</sub> on p-type SiNWs. The TiO<sub>2</sub>/SiNWs heterostructure exhibited an outstanding OCM performance under simulated solar light irradiation compared to the single components. This enhanced efficiency was attributed to the intrinsic electrical field formed between n-type TiO<sub>2</sub> and p-type SiNWs, which forces generated charge carriers to move in opposite directions and suppresses charge recombination. Besides, surface morphology and optical properties of the the p-n TiO<sub>2</sub>/SiNWs catalyst are also beneficial for the photocatalytic activity. It is expected that the results of this study will provide massive guidance in synthesizing an efficient photocatalyst for CH<sub>4</sub> conversion under mild conditions.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1132-1141"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.15.92","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid recombination of charge carriers in semiconductors is a main drawback for photocatalytic oxidative coupling of methane (OCM) reactions. Herein, we propose a novel catalyst by developing a p-n junction titania-silicon nanowires (TiO2/SiNWs) heterostructure. The structure is fabricated by atomic layer deposition of TiO2 on p-type SiNWs. The TiO2/SiNWs heterostructure exhibited an outstanding OCM performance under simulated solar light irradiation compared to the single components. This enhanced efficiency was attributed to the intrinsic electrical field formed between n-type TiO2 and p-type SiNWs, which forces generated charge carriers to move in opposite directions and suppresses charge recombination. Besides, surface morphology and optical properties of the the p-n TiO2/SiNWs catalyst are also beneficial for the photocatalytic activity. It is expected that the results of this study will provide massive guidance in synthesizing an efficient photocatalyst for CH4 conversion under mild conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室温下 TiO2/SiNWs p-n 结催化剂的光催化甲烷氧化作用。
半导体中电荷载流子的快速重组是光催化甲烷氧化偶联(OCM)反应的主要缺点。在此,我们通过开发一种 p-n 结二氧化钛-硅纳米线(TiO2/SiNWs)异质结构,提出了一种新型催化剂。该结构是通过在 p 型硅纳米线上原子层沉积 TiO2 制成的。与单一成分相比,TiO2/SiNWs 异质结构在模拟太阳光照射下表现出卓越的 OCM 性能。效率的提高归功于 n 型 TiO2 和 p 型 SiNWs 之间形成的固有电场,该电场迫使产生的电荷载流子向相反的方向移动,从而抑制了电荷重组。此外,p-n TiO2/SiNWs 催化剂的表面形貌和光学特性也有利于提高光催化活性。预计本研究的结果将为在温和条件下合成一种用于转化 CH4 的高效光催化剂提供大量指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
期刊最新文献
Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control. Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals. Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications. A biomimetic approach towards a universal slippery liquid infused surface coating. Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1