Advances in biosynthesis and downstream processing of diols

IF 12.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology advances Pub Date : 2024-09-19 DOI:10.1016/j.biotechadv.2024.108455
{"title":"Advances in biosynthesis and downstream processing of diols","authors":"","doi":"10.1016/j.biotechadv.2024.108455","DOIUrl":null,"url":null,"abstract":"<div><div>Diols are important platform chemicals with a wide range of applications in the fields of chemical and pharmaceutical industries, food, feed and cosmetics. In particular, 1,3-propanediol (PDO), 1,4-butanediol (1,4-BDO) and 1,3-butanediol (1,3-BDO) are appealing monomers for producing industrially important polymers and plastics. Therefore, the commercialization of bio-based diols is highly important for supporting the growth of biomanufacturing for the fiber industry. This review focuses primarily on the microbial production of PDO, 1,4-BDO and 1,3-BDO with respect to different microbial strains and biological routes. In addition, metabolic platforms which are designed to produce various diols using generic bioconversion strategies are reviewed for the first time. Finally, we also summarize and discuss recent developments in the downstream processing of PDO according to their advantages and drawbacks, which is taken as an example to present the prospects and challenges for industrial separation and purification of diols from microbial fermentation broth.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975024001496","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diols are important platform chemicals with a wide range of applications in the fields of chemical and pharmaceutical industries, food, feed and cosmetics. In particular, 1,3-propanediol (PDO), 1,4-butanediol (1,4-BDO) and 1,3-butanediol (1,3-BDO) are appealing monomers for producing industrially important polymers and plastics. Therefore, the commercialization of bio-based diols is highly important for supporting the growth of biomanufacturing for the fiber industry. This review focuses primarily on the microbial production of PDO, 1,4-BDO and 1,3-BDO with respect to different microbial strains and biological routes. In addition, metabolic platforms which are designed to produce various diols using generic bioconversion strategies are reviewed for the first time. Finally, we also summarize and discuss recent developments in the downstream processing of PDO according to their advantages and drawbacks, which is taken as an example to present the prospects and challenges for industrial separation and purification of diols from microbial fermentation broth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二元醇的生物合成和下游加工取得进展。
二元醇是重要的平台化学品,在化工、制药、食品、饲料和化妆品领域有着广泛的应用。其中,1,3-丙二醇(PDO)、1,4-丁二醇(1,4-BDO)和 1,3-丁二醇(1,3-BDO)是生产工业用聚合物和塑料的重要单体。因此,生物基二醇的商业化对于支持纤维行业生物制造的发展非常重要。本综述主要针对不同微生物菌株和生物途径,重点介绍微生物生产 PDO、1,4-BDO 和 1,3-BDO。此外,还首次综述了利用一般生物转化策略生产各种二元醇的代谢平台。最后,我们还根据其优缺点总结并讨论了 PDO 下游加工的最新进展,并以此为例介绍了从微生物发酵液中分离和纯化二元醇的工业前景和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology advances
Biotechnology advances 工程技术-生物工程与应用微生物
CiteScore
25.50
自引率
2.50%
发文量
167
审稿时长
37 days
期刊介绍: Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.
期刊最新文献
Harnessing Raman spectroscopy for cell therapy bioprocessing Implications of glycosylation for the development of selected cytokines and their derivatives for medical use Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy Exploring the versatility of Porphyridium sp.: A comprehensive review of cultivation, bio-product extraction, purification, and characterization techniques Process simulation and evaluation of scaled-up biocatalytic systems: Advances, challenges, and future prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1