P Vijaya, Satish Chander, Roshan Fernandes, Anisha P Rodrigues, Maheswari Raja
{"title":"Flamingo Search Sailfish Optimizer Based SqueezeNet for Detection of Breast Cancer Using MRI Images.","authors":"P Vijaya, Satish Chander, Roshan Fernandes, Anisha P Rodrigues, Maheswari Raja","doi":"10.1080/07357907.2024.2403088","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer with increased risk in women is identified with Breast Magnetic Resonance Imaging (Breast MRI) and this helps in evaluating treatment therapies. Breast MRI is time time-consuming process that involves the assessment of current imaging. This research work depends on the detection of breast cancer at the earlier stages. Among various cancers, breast cancer in women occurs in larger accounts for almost 30% of estimated cancer cases. In this research, many steps are followed for breast cancer detection like pre-processing, segmentation, augmentation, extraction of features, and cancer detection. Here, the median filter is utilized for pre-processing, as well as segmentation is followed after pre-processing, which is done by Psi-Net. Moreover, the process of augmentation like shearing, translation, and cropping are followed after segmentation. Also, the segmented image tends to process feature extraction, where features like shape features, Completed Local Binary Pattern (CLBP), Pyramid Histogram of Oriented Gradients (PHOG), and statistical features are extracted. Finally, breast cancer is detected using the DL model, SqueezeNet. Here, the newly devised Flamingo Search SailFish Optimizer (FSSFO) is used in training Psi-Net as well as SqueezeNet. Furthermore, FSSFO is the combination of both the Flamingo Search Algorithm (FSA) and SailFish Optimizer (SFO).</p>","PeriodicalId":9463,"journal":{"name":"Cancer Investigation","volume":" ","pages":"745-768"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07357907.2024.2403088","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer with increased risk in women is identified with Breast Magnetic Resonance Imaging (Breast MRI) and this helps in evaluating treatment therapies. Breast MRI is time time-consuming process that involves the assessment of current imaging. This research work depends on the detection of breast cancer at the earlier stages. Among various cancers, breast cancer in women occurs in larger accounts for almost 30% of estimated cancer cases. In this research, many steps are followed for breast cancer detection like pre-processing, segmentation, augmentation, extraction of features, and cancer detection. Here, the median filter is utilized for pre-processing, as well as segmentation is followed after pre-processing, which is done by Psi-Net. Moreover, the process of augmentation like shearing, translation, and cropping are followed after segmentation. Also, the segmented image tends to process feature extraction, where features like shape features, Completed Local Binary Pattern (CLBP), Pyramid Histogram of Oriented Gradients (PHOG), and statistical features are extracted. Finally, breast cancer is detected using the DL model, SqueezeNet. Here, the newly devised Flamingo Search SailFish Optimizer (FSSFO) is used in training Psi-Net as well as SqueezeNet. Furthermore, FSSFO is the combination of both the Flamingo Search Algorithm (FSA) and SailFish Optimizer (SFO).
期刊介绍:
Cancer Investigation is one of the most highly regarded and recognized journals in the field of basic and clinical oncology. It is designed to give physicians a comprehensive resource on the current state of progress in the cancer field as well as a broad background of reliable information necessary for effective decision making. In addition to presenting original papers of fundamental significance, it also publishes reviews, essays, specialized presentations of controversies, considerations of new technologies and their applications to specific laboratory problems, discussions of public issues, miniseries on major topics, new and experimental drugs and therapies, and an innovative letters to the editor section. One of the unique features of the journal is its departmentalized editorial sections reporting on more than 30 subject categories covering the broad spectrum of specialized areas that together comprise the field of oncology. Edited by leading physicians and research scientists, these sections make Cancer Investigation the prime resource for clinicians seeking to make sense of the sometimes-overwhelming amount of information available throughout the field. In addition to its peer-reviewed clinical research, the journal also features translational studies that bridge the gap between the laboratory and the clinic.