Persistent Impact of Prior Experience on Spatial Learning.

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2024-09-20 Print Date: 2024-09-01 DOI:10.1523/ENEURO.0266-24.2024
Michelle P Awh, Kenneth W Latimer, Nan Zhou, Zachary M Leveroni, Anna G Poon, Zoe M Stephens, Jai Y Yu
{"title":"Persistent Impact of Prior Experience on Spatial Learning.","authors":"Michelle P Awh, Kenneth W Latimer, Nan Zhou, Zachary M Leveroni, Anna G Poon, Zoe M Stephens, Jai Y Yu","doi":"10.1523/ENEURO.0266-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Learning to solve a new problem involves identifying the operating rules, which can be accelerated if known rules generalize in the new context. We ask how prior experience affects learning a new rule that is distinct from known rules. We examined how rats learned a new spatial navigation task after having previously learned tasks with different navigation rules. The new task differed from the previous tasks in spatial layout and navigation rule. We found that experience history did not impact overall performance. However, by examining navigation choice sequences in the new task, we found experience-dependent differences in exploration patterns during early stages of learning, as well as differences in the types of errors made during stable performance. The differences were consistent with the animals adopting experience-dependent memory strategies to discover and implement the new rule. Our results indicate prior experience shapes the strategies for solving novel problems, and the impact of prior experience remains persistent.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419697/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0266-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Learning to solve a new problem involves identifying the operating rules, which can be accelerated if known rules generalize in the new context. We ask how prior experience affects learning a new rule that is distinct from known rules. We examined how rats learned a new spatial navigation task after having previously learned tasks with different navigation rules. The new task differed from the previous tasks in spatial layout and navigation rule. We found that experience history did not impact overall performance. However, by examining navigation choice sequences in the new task, we found experience-dependent differences in exploration patterns during early stages of learning, as well as differences in the types of errors made during stable performance. The differences were consistent with the animals adopting experience-dependent memory strategies to discover and implement the new rule. Our results indicate prior experience shapes the strategies for solving novel problems, and the impact of prior experience remains persistent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先前经验对空间学习的持续影响
学习解决一个新问题需要确定操作规则,如果已知规则在新环境中具有普遍性,学习速度就会加快。我们的问题是,先前的经验如何影响学习与已知规则不同的新规则。我们研究了大鼠在之前学习了具有不同导航规则的任务后,是如何学习新的空间导航任务的。新任务在空间布局和导航规则上与之前的任务不同。我们发现,经验历史并不影响总体表现。然而,通过研究新任务中的导航选择序列,我们发现在学习的早期阶段,动物的探索模式存在经验依赖性差异,在稳定表现期间,动物所犯错误的类型也存在差异。这些差异与动物采用依赖经验的记忆策略来发现和执行新规则是一致的。我们的研究结果表明,先前的经验塑造了解决新问题的策略,而且先前经验的影响仍然持续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Sex-Dependent Changes in Gonadotropin-Releasing Hormone Neuron Voltage-Gated Potassium Currents in a Mouse Model of Temporal Lobe Epilepsy. Bilateral Alignment of Receptive Fields in the Olfactory Cortex. Peripheral CaV2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. The Neural Correlates of Spontaneous Beat Processing and Its Relationship with Music-Related Characteristics of the Individual. The Orbitofrontal Cortex Is Required for Learned Modulation of Innate Olfactory Behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1