首页 > 最新文献

eNeuro最新文献

英文 中文
Ventral pallidal GABAergic neurons drive consumption in male, but not female rats.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-14 DOI: 10.1523/ENEURO.0245-24.2025
Alexandra Scott, Anika Paulson, Collin Prill, Klaiten Kermoade, Bailey Newell, Elizabeth A Eckenwiler, Julia C Lemos, Jocelyn M Richard

Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or "hedonic" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP gamma-Aminobutyric acidergic (GABA) neurons have been implicated in cue-elicited reward seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to activate VP GABA neurons in non-restricted male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.Significance statement The ventral pallidum has been implicated bidirectionally in consumption of both standard food and highly palatable rewards, but the specific neural subpopulations involved have not been identified. Here we chemogenetically excited GABAergic ventral pallidal neurons and tested consumption of standard chow and a sweet sucrose solution. We found that chemogenetic excitation of these neurons stimulated consumption of both rewards but did so specifically in male rats. These results suggest that GABAergic ventral pallidal neurons can drive overconsumption of foods in male rats, but not female rats, raising important questions about the role of ventral pallidum in consumption in females, who have been understudied in this domain.

{"title":"Ventral pallidal GABAergic neurons drive consumption in male, but not female rats.","authors":"Alexandra Scott, Anika Paulson, Collin Prill, Klaiten Kermoade, Bailey Newell, Elizabeth A Eckenwiler, Julia C Lemos, Jocelyn M Richard","doi":"10.1523/ENEURO.0245-24.2025","DOIUrl":"https://doi.org/10.1523/ENEURO.0245-24.2025","url":null,"abstract":"<p><p>Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or \"hedonic\" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP gamma-Aminobutyric acidergic (GABA) neurons have been implicated in cue-elicited reward seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to activate VP GABA neurons in non-restricted male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.<b>Significance statement</b> The ventral pallidum has been implicated bidirectionally in consumption of both standard food and highly palatable rewards, but the specific neural subpopulations involved have not been identified. Here we chemogenetically excited GABAergic ventral pallidal neurons and tested consumption of standard chow and a sweet sucrose solution. We found that chemogenetic excitation of these neurons stimulated consumption of both rewards but did so specifically in male rats. These results suggest that GABAergic ventral pallidal neurons can drive overconsumption of foods in male rats, but not female rats, raising important questions about the role of ventral pallidum in consumption in females, who have been understudied in this domain.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Failed stopping transiently suppresses the electromyogram in task-irrelevant muscles.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-14 DOI: 10.1523/ENEURO.0166-24.2025
Isaiah Mills, Mitchell Fisher, Corey George Wadsley, Ian Greenhouse

Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited. Canceling one action can delay the execution of other simultaneous actions. This stopping-interference effect on continuing actions during selective stopping may be attributed to a global inhibitory mechanism with widespread effects on the motor system. Previous studies have characterized a transient global reduction in corticomotor excitability by combining brain stimulation with electromyography (EMG). Here, we examined whether global motor inhibition during selective stopping can be measured peripherally and with high temporal resolution using EMG alone. Eighteen participants performed a bimanual anticipatory response inhibition task with their index fingers while maintaining a tonic contraction of the task-irrelevant abductor digiti minimi (ADM) muscles. A time series analysis of the ADM EMG signal revealed transient inhibition during failed stopping compared to go response trials 150 ms to 203 ms following the stop signal. The pattern was observed in both hands during bimanual stop-all trials as well as selective stop-left and stop-right trials of either hand. These results indicate that tonic muscle activity is sensitive to the effects of global motor suppression even when stopping fails. Therefore, EMG can provide a physiological marker of global motor inhibition to probe the time course and extent of stopping processes.Significance Statement The ability to stop ongoing actions is disrupted in a variety of brain disorders, and failing to stop can have dire consequences for personal safety. Successfully stopping an initiated response has a widespread inhibitory effect on motor system excitability. By measuring activity in task-irrelevant muscles during the performance of a stop task we unveiled a novel signature of transient motor system inhibition when stopping fails. The pattern was observed during attempts to selectively and non-selectively stop actions. This temporally precise signature of peripheral inhibition may be leveraged to better examine candidate neural mechanisms, and our non-invasive approach is well-suited for tracking inhibitory control deficits in clinical populations.

{"title":"Failed stopping transiently suppresses the electromyogram in task-irrelevant muscles.","authors":"Isaiah Mills, Mitchell Fisher, Corey George Wadsley, Ian Greenhouse","doi":"10.1523/ENEURO.0166-24.2025","DOIUrl":"https://doi.org/10.1523/ENEURO.0166-24.2025","url":null,"abstract":"<p><p>Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited. Canceling one action can delay the execution of other simultaneous actions. This stopping-interference effect on continuing actions during selective stopping may be attributed to a global inhibitory mechanism with widespread effects on the motor system. Previous studies have characterized a transient global reduction in corticomotor excitability by combining brain stimulation with electromyography (EMG). Here, we examined whether global motor inhibition during selective stopping can be measured peripherally and with high temporal resolution using EMG alone. Eighteen participants performed a bimanual anticipatory response inhibition task with their index fingers while maintaining a tonic contraction of the task-irrelevant abductor digiti minimi (ADM) muscles. A time series analysis of the ADM EMG signal revealed transient inhibition during failed stopping compared to go response trials 150 ms to 203 ms following the stop signal. The pattern was observed in both hands during bimanual stop-all trials as well as selective stop-left and stop-right trials of either hand. These results indicate that tonic muscle activity is sensitive to the effects of global motor suppression even when stopping fails. Therefore, EMG can provide a physiological marker of global motor inhibition to probe the time course and extent of stopping processes.<b>Significance Statement</b> The ability to stop ongoing actions is disrupted in a variety of brain disorders, and failing to stop can have dire consequences for personal safety. Successfully stopping an initiated response has a widespread inhibitory effect on motor system excitability. By measuring activity in task-irrelevant muscles during the performance of a stop task we unveiled a novel signature of transient motor system inhibition when stopping fails. The pattern was observed during attempts to selectively and non-selectively stop actions. This temporally precise signature of peripheral inhibition may be leveraged to better examine candidate neural mechanisms, and our non-invasive approach is well-suited for tracking inhibitory control deficits in clinical populations.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-specific contrasting role of BECLIN-1 protein in pain hypersensitivity and anxiety-like behaviors.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-14 DOI: 10.1523/ENEURO.0244-24.2024
Fariya Zaheer, Gabriel J Levine, Ana Leticia Simal, Seyed Reza Fatemi Tabatabaei, Tami A Martino, Giannina Descalzi

Chronic pain is a debilitative disease affecting 1 in 5 adults globally, and is a major risk factor for anxiety (Goldberg and McGee, 2011; Lurie, DI., 2018). Given the current dearth of available treatments for both individuals living with chronic pain and mental illnesses, there is a critical need for research into the molecular mechanisms involved in order to discover novel treatment targets. Cellular homeostasis is crucial for normal bodily functions and investigations of this process may provide better understanding of the mechanisms driving the development of chronic pain. Using the spared nerve injury (SNI) model of neuropathic pain, we found contrasting roles for BECLIN-1 in the development of pain hypersensitivity and anxiety-like behaviors in a sex-dependent manner. Remarkably, we found that male SNI mice with impaired BECLIN-1 function demonstrated heightened mechanical and thermal hypersensitivity compared to male wildtype SNI mice, while female SNI mice with impaired BECLIN-1 function demonstrated similar thresholds to the female wildtype SNI mice. We also found that disruptions of BECLIN-1 prevented SNI induced increases in anxiety-like behaviors in male mice. Our data thus indicate that BECLIN-1 is differentially involved in the nociceptive and emotion components of chronic pain in male but not female mice.Significance Statement One in five adults suffer from chronic pain, and it is a major risk factor for anxiety. Close to three quarters of the population suffering from chronic pain are women, yet the vast majority of pre-clinical research uses solely male models, and excludes females. In this manuscript, we use female and male mice to discover a novel role for BECLIN-1 in neuropathic pain, and comorbid anxiety-like behaviors in mice. We found that disruptions of Beclin-1 reduces nociceptive hypersensitivity whilst preventing pain-induced increases in anxiety-like behaviors. Notably, these effects were sex-dependent, where only males, but not females, showed BECLIN-1 mediated effects. Our data thus indicates that macroautophagy is differentially involved in nociception and anxiety, in male, but not female mice.

{"title":"Sex-specific contrasting role of BECLIN-1 protein in pain hypersensitivity and anxiety-like behaviors.","authors":"Fariya Zaheer, Gabriel J Levine, Ana Leticia Simal, Seyed Reza Fatemi Tabatabaei, Tami A Martino, Giannina Descalzi","doi":"10.1523/ENEURO.0244-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0244-24.2024","url":null,"abstract":"<p><p>Chronic pain is a debilitative disease affecting 1 in 5 adults globally, and is a major risk factor for anxiety (Goldberg and McGee, 2011; Lurie, DI., 2018). Given the current dearth of available treatments for both individuals living with chronic pain and mental illnesses, there is a critical need for research into the molecular mechanisms involved in order to discover novel treatment targets. Cellular homeostasis is crucial for normal bodily functions and investigations of this process may provide better understanding of the mechanisms driving the development of chronic pain. Using the spared nerve injury (SNI) model of neuropathic pain, we found contrasting roles for BECLIN-1 in the development of pain hypersensitivity and anxiety-like behaviors in a sex-dependent manner. Remarkably, we found that male SNI mice with impaired BECLIN-1 function demonstrated heightened mechanical and thermal hypersensitivity compared to male wildtype SNI mice, while female SNI mice with impaired BECLIN-1 function demonstrated similar thresholds to the female wildtype SNI mice. We also found that disruptions of BECLIN-1 prevented SNI induced increases in anxiety-like behaviors in male mice. Our data thus indicate that BECLIN-1 is differentially involved in the nociceptive and emotion components of chronic pain in male but not female mice.<b>Significance Statement</b> One in five adults suffer from chronic pain, and it is a major risk factor for anxiety. Close to three quarters of the population suffering from chronic pain are women, yet the vast majority of pre-clinical research uses solely male models, and excludes females. In this manuscript, we use female and male mice to discover a novel role for BECLIN-1 in neuropathic pain, and comorbid anxiety-like behaviors in mice. We found that disruptions of <i>Beclin-1</i> reduces nociceptive hypersensitivity whilst preventing pain-induced increases in anxiety-like behaviors. Notably, these effects were sex-dependent, where only males, but not females, showed BECLIN-1 mediated effects. Our data thus indicates that macroautophagy is differentially involved in nociception and anxiety, in male, but not female mice.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-validating the electrophysiological markers of early face categorization.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-14 DOI: 10.1523/ENEURO.0317-24.2024
Fazilet Zeynep Yildirim-Keles, Lisa Stacchi, Roberto Caldara

Human face categorization has been extensively studied using event-related potentials (ERPs), positing the N170 ERP component as a robust neural marker of face categorization. Recently, the fast periodic visual stimulation (FPVS) approach relying on steady-state visual evoked potentials (SSVEPs) has also been used to investigate face categorization. FPVS studies consistently report strong bilateral SSVEP face categorization responses over the occipito-temporal cortex, with a right hemispheric dominance, closely mirroring the N170 scalp topography. However, it remains unclear whether SSVEP responses can be considered a proxy for the N170 or are driven by different components. To address this question, we recorded electrophysiological signals from observers viewing face and object images during FPVS and ERP paradigms. We quantified the FPVS response in the frequency domain and extracted ERP components, including the P1, N170, and P2, from both the FPVS time domain and ERP paradigms. Our results revealed little relationship between any single ERP component and the FPVS frequency response. Only the peak-to-peak differences between N170 and P2 components consistently explained the FPVS frequency response. Our data show that the FPVS frequency response reflects a later complex neural integration rather than any isolated ERP component, such as the N170. These findings raise important methodological and theoretical considerations regarding the relationship between SSVEPs and transient ERPs. While both markers are indicative of human face categorization, they appear to capture different stages of this cognitive process.Significance Statement Our study untangles the very nature of the electrophysiological neural responses of face categorization. We recorded and directly compared steady-state visual evoked potentials (SSVEPs) with transient event related potentials (ERP) evoked by faces and objects in human observers. Contrary to the assumption associating SSVEPs with the early N170 ERP component, we found that the N170-P2 difference was consistently associated with the SSVEPs. This finding suggests that SSVEPs in fast periodic visual stimulation (FPVS) may reflect later stages of neural processing. Our findings invite to caution when interpreting SSVEP responses, avoiding premature assumptions about their relationship with ERPs. This work highlights the need for integrated research approaches to better understand the complex interplay between SSVEPs and ERPs across different cognitive domains.

{"title":"Cross-validating the electrophysiological markers of early face categorization.","authors":"Fazilet Zeynep Yildirim-Keles, Lisa Stacchi, Roberto Caldara","doi":"10.1523/ENEURO.0317-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0317-24.2024","url":null,"abstract":"<p><p>Human face categorization has been extensively studied using event-related potentials (ERPs), positing the N170 ERP component as a robust neural marker of face categorization. Recently, the fast periodic visual stimulation (FPVS) approach relying on steady-state visual evoked potentials (SSVEPs) has also been used to investigate face categorization. FPVS studies consistently report strong bilateral SSVEP face categorization responses over the occipito-temporal cortex, with a right hemispheric dominance, closely mirroring the N170 scalp topography. However, it remains unclear whether SSVEP responses can be considered a proxy for the N170 or are driven by different components. To address this question, we recorded electrophysiological signals from observers viewing face and object images during FPVS and ERP paradigms. We quantified the FPVS response in the frequency domain and extracted ERP components, including the P1, N170, and P2, from both the FPVS time domain and ERP paradigms. Our results revealed little relationship between any single ERP component and the FPVS frequency response. Only the peak-to-peak differences between N170 and P2 components <i>consistently</i> explained the FPVS frequency response. Our data show that the FPVS frequency response reflects a later complex neural integration rather than any isolated ERP component, such as the N170. These findings raise important methodological and theoretical considerations regarding the relationship between SSVEPs and transient ERPs. While both markers are indicative of human face categorization, they appear to capture different stages of this cognitive process.<b>Significance Statement</b> Our study untangles the very nature of the electrophysiological neural responses of face categorization. We recorded and directly compared steady-state visual evoked potentials (SSVEPs) with transient event related potentials (ERP) evoked by faces and objects in human observers. Contrary to the assumption associating SSVEPs with the early N170 ERP component, we found that the N170-P2 difference was consistently associated with the SSVEPs. This finding suggests that SSVEPs in fast periodic visual stimulation (FPVS) may reflect later stages of neural processing. Our findings invite to caution when interpreting SSVEP responses, avoiding premature assumptions about their relationship with ERPs. This work highlights the need for integrated research approaches to better understand the complex interplay between SSVEPs and ERPs across different cognitive domains.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cortical HFS-induced neo-Hebbian local plasticity enhances efferent output signal and strengthens afferent input connectivity.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-14 DOI: 10.1523/ENEURO.0045-24.2024
Xiao Li, Xue Wang, Xiaohan Hu, Peng Tang, Congping Chen, Ling He, Mengying Chen, Stephen Temitayo Bello, Tao Chen, Xiaoyu Wang, Yin Ting Wong, Wenjian Sun, Xi Chen, Jianan Qu, Jufang He

High-frequency stimulation (HFS)-induced long-term potentiation (LTP) is generally regarded as a homosynaptic Hebbian-type LTP, where synaptic changes are thought to occur at the synapses that project from the stimulation site and terminate onto the neurons at the recording site. In this study, we first investigated HFS-induced LTP on urethane-anesthetized rats and found that cortical HFS enhances neural responses at the recording site through the strengthening of local connectivity with nearby neurons at the stimulation site, rather than through synaptic strengthening at the recording site. This enhanced local connectivity at the stimulation site leads to increased output propagation, resulting in signal potentiation at the recording site. Additionally, we discovered that HFS can also non-specifically strengthen distant afferent synapses at the HFS site, thereby expanding its impact beyond local neural connections. This form of plasticity exhibits a neo-Hebbian characteristic as it exclusively manifests in the presence of cholecystokinin (CCK) release, induced by HFS. The cortical HFS-induced local LTP was further supported by a behavioral task, providing additional evidence. Our results unveil a previously overlooked mechanism underlying cortical plasticity: synaptic plasticity is more likely to occur around the soma site of strongly activated cortical neurons, rather than solely at their projection terminals.Significance Statement This manuscript reveals that cortical HFS triggers the local release of CCK, a crucial neuromodulator for cortical plasticity, which is released at the HFS site from other cortical efferents rather than in a homosynaptic manner. Therefore, cortical HFS influences long-range cortical efferents through changes at the HFS location, not at the projection terminals. Additionally, the HFS-triggered locally released CCK strengthens long-range afferent synapses to the HFS site. This evidence suggests that a CCK-dependent neo-Hebbian mechanism underlies cortical plasticity.

{"title":"Cortical HFS-induced neo-Hebbian local plasticity enhances efferent output signal and strengthens afferent input connectivity.","authors":"Xiao Li, Xue Wang, Xiaohan Hu, Peng Tang, Congping Chen, Ling He, Mengying Chen, Stephen Temitayo Bello, Tao Chen, Xiaoyu Wang, Yin Ting Wong, Wenjian Sun, Xi Chen, Jianan Qu, Jufang He","doi":"10.1523/ENEURO.0045-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0045-24.2024","url":null,"abstract":"<p><p>High-frequency stimulation (HFS)-induced long-term potentiation (LTP) is generally regarded as a homosynaptic Hebbian-type LTP, where synaptic changes are thought to occur at the synapses that project from the stimulation site and terminate onto the neurons at the recording site. In this study, we first investigated HFS-induced LTP on urethane-anesthetized rats and found that cortical HFS enhances neural responses at the recording site through the strengthening of local connectivity with nearby neurons at the stimulation site, rather than through synaptic strengthening at the recording site. This enhanced local connectivity at the stimulation site leads to increased output propagation, resulting in signal potentiation at the recording site. Additionally, we discovered that HFS can also non-specifically strengthen distant afferent synapses at the HFS site, thereby expanding its impact beyond local neural connections. This form of plasticity exhibits a neo-Hebbian characteristic as it exclusively manifests in the presence of cholecystokinin (CCK) release, induced by HFS. The cortical HFS-induced local LTP was further supported by a behavioral task, providing additional evidence. Our results unveil a previously overlooked mechanism underlying cortical plasticity: synaptic plasticity is more likely to occur around the soma site of strongly activated cortical neurons, rather than solely at their projection terminals.<b>Significance Statement</b> This manuscript reveals that cortical HFS triggers the local release of CCK, a crucial neuromodulator for cortical plasticity, which is released at the HFS site from other cortical efferents rather than in a homosynaptic manner. Therefore, cortical HFS influences long-range cortical efferents through changes at the HFS location, not at the projection terminals. Additionally, the HFS-triggered locally released CCK strengthens long-range afferent synapses to the HFS site. This evidence suggests that a CCK-dependent neo-Hebbian mechanism underlies cortical plasticity.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Lateral Habenula Is Necessary for Maternal Behavior in the Naturally Parturient Primiparous Mouse Dam.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-13 Print Date: 2025-01-01 DOI: 10.1523/ENEURO.0092-24.2024
Jessie Benedict, Robert H Cudmore, Diarra Oden, Aleah Spruell, David J Linden

Mammalian parenting is an unusually demanding commitment. How has the reward system been co-opted to ensure parental care? Previous work has implicated the lateral habenula (LHb), an epithalamic nucleus, as a potential intersection of parenting behavior and reward. Here, we examine the role of the LHb in the maternal behavior of naturally parturient primiparous mouse dams. We show that kainic acid lesions of the LHb induced a severe maternal neglect phenotype in dams toward their biological pups. Next, we demonstrate that chronic chemogenetic inactivation of the LHb using inhibitory DREADDs impaired acquisition and performance of various maternal behaviors, such as pup retrieval and nesting. We present a random intercept model suggesting LHb inactivation prevents the acquisition of pup retrieval, a novel maternal behavior in primiparous mouse dams, and decreases nest building performance, an already-established behavior, in primiparous mouse dams. Lastly, we examine the spatial histology of kainic acid-treated dams with a random intercept model, which suggests the role of LHb in maternal behavior may be preferentially localized at the posterior aspect of this structure. Together, these findings serve to establish the LHb as required for maternal behavior in the mouse dam, thereby complementing previous findings implicating the LHb in parental behavior using pup-sensitized virgin female mice.

哺乳动物养育子女是一项异常艰巨的任务。奖励系统是如何被用来确保父母的照顾呢?以前的研究表明,外侧哈氏核(LHb)是一个上丘脑核,是养育行为和奖赏的潜在交叉点。在这里,我们研究了 LHb 在自然分娩的初产小鼠母体的母性行为中的作用。我们发现,凯尼酸损伤 LHb 会诱导母鼠对其亲生幼崽产生严重的母性忽视表型。接下来,我们证明了使用抑制性 DREADDs 对 LHb 进行慢性化学失活会损害各种母性行为的习得和表现,如幼崽的找回和筑巢。我们提出了一个随机截距模型,该模型表明,LHb失活会阻止初产小鼠母体获得取回幼崽这种新的母性行为,并降低初产小鼠母体的筑巢行为(一种已经确立的行为)。最后,我们用随机截距模型研究了凯尼酸处理过的母鼠的空间组织学,结果表明 LHb 在母性行为中的作用可能优先定位在这一结构的后部。这些发现共同确立了小鼠母体的母性行为需要LHb,从而补充了之前利用对幼鼠敏感的处女雌性小鼠得出的LHb与父母行为有关的结论。在此期间,LHb 作为惩罚信号的枢纽一直备受关注。最近,人们对 LHb 在母性行为中的作用重新产生了兴趣,一篇重要的论文研究了幼鼠敏感的处女雌性小鼠在幼鼠定向行为中的 LHb 功能。但是,人们还不知道敏感处女雌性小鼠的幼仔定向行为与天然母鼠的母性行为有多接近。这项工作证明了 LHb 在调节小鼠自然母性行为中的重要性。
{"title":"The Lateral Habenula Is Necessary for Maternal Behavior in the Naturally Parturient Primiparous Mouse Dam.","authors":"Jessie Benedict, Robert H Cudmore, Diarra Oden, Aleah Spruell, David J Linden","doi":"10.1523/ENEURO.0092-24.2024","DOIUrl":"10.1523/ENEURO.0092-24.2024","url":null,"abstract":"<p><p>Mammalian parenting is an unusually demanding commitment. How has the reward system been co-opted to ensure parental care? Previous work has implicated the lateral habenula (LHb), an epithalamic nucleus, as a potential intersection of parenting behavior and reward. Here, we examine the role of the LHb in the maternal behavior of naturally parturient primiparous mouse dams. We show that kainic acid lesions of the LHb induced a severe maternal neglect phenotype in dams toward their biological pups. Next, we demonstrate that chronic chemogenetic inactivation of the LHb using inhibitory DREADDs impaired acquisition and performance of various maternal behaviors, such as pup retrieval and nesting. We present a random intercept model suggesting LHb inactivation prevents the acquisition of pup retrieval, a novel maternal behavior in primiparous mouse dams, and decreases nest building performance, an already-established behavior, in primiparous mouse dams. Lastly, we examine the spatial histology of kainic acid-treated dams with a random intercept model, which suggests the role of LHb in maternal behavior may be preferentially localized at the posterior aspect of this structure. Together, these findings serve to establish the LHb as required for maternal behavior in the mouse dam, thereby complementing previous findings implicating the LHb in parental behavior using pup-sensitized virgin female mice.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-10 Print Date: 2025-01-01 DOI: 10.1523/ENEURO.0418-24.2024
Patrick Cooke, David J Linden

It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury. Here, we have used in vivo two-photon microscopy in layer 1 of the primary somatosensory cortex in transgenic mice harboring a fluorophore selectively expressed in NE neurons. This protocol allowed us to explore the dynamic nature of NE axons following injury with the selective NE axon toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4). Following DSP4, NE axons were massively depleted and then slowly and partially recovered their density over a period of weeks. This regrowth was dominated by new axons entering the imaged volume. There was almost no contribution from local sprouting from spared NE axons. Regrown axons did not appear to use either the paths of previously lesioned NE axons or NE axons that were spared and survived DSP4 as a guide. To measure NE release, GCaMP8s was selectively expressed in neocortical astrocytes and startle-evoked, NE receptor-mediated Ca2+ transients were measured. These Ca2+ transients were abolished soon after DSP4 lesion but returned to pre-lesion values after 3-5 weeks, roughly coincident with NE axon regrowth, suggesting that the regrown NE axons are competent to release NE in response to a physiological stimulus in the awake mouse.

{"title":"Functional Regrowth of Norepinephrine Axons in the Adult Mouse Brain Following Injury.","authors":"Patrick Cooke, David J Linden","doi":"10.1523/ENEURO.0418-24.2024","DOIUrl":"10.1523/ENEURO.0418-24.2024","url":null,"abstract":"<p><p>It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury. Here, we have used in vivo two-photon microscopy in layer 1 of the primary somatosensory cortex in transgenic mice harboring a fluorophore selectively expressed in NE neurons. This protocol allowed us to explore the dynamic nature of NE axons following injury with the selective NE axon toxin <i>N</i>-(2-chloroethyl)-<i>N</i>-ethyl-2-bromobenzylamine (DSP4). Following DSP4, NE axons were massively depleted and then slowly and partially recovered their density over a period of weeks. This regrowth was dominated by new axons entering the imaged volume. There was almost no contribution from local sprouting from spared NE axons. Regrown axons did not appear to use either the paths of previously lesioned NE axons or NE axons that were spared and survived DSP4 as a guide. To measure NE release, GCaMP8s was selectively expressed in neocortical astrocytes and startle-evoked, NE receptor-mediated Ca<sup>2+</sup> transients were measured. These Ca<sup>2+</sup> transients were abolished soon after DSP4 lesion but returned to pre-lesion values after 3-5 weeks, roughly coincident with NE axon regrowth, suggesting that the regrown NE axons are competent to release NE in response to a physiological stimulus in the awake mouse.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction between Facial Expression and Color in Modulating ERP P3.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-10 Print Date: 2025-01-01 DOI: 10.1523/ENEURO.0419-24.2024
Yuya Hasegawa, Hideki Tamura, Shigeki Nakauchi, Tetsuto Minami

The relationships between facial expression and color affect human cognition functions such as perception and memory. However, whether these relationships influence selective attention and brain activity contributed to selective attention remains unclear. For example, reddish angry faces increase emotion intensity, but it is unclear whether brain activity and selective attention are similarly enhanced. To investigate these questions, we examined whether event-related potentials for faces vary depending on facial expression and color by recording electroencephalography (EEG) data. We conducted an oddball task using stimuli that combined facial expressions (angry, neutral) and facial colors (original, red, green). The participants counted the number of times a rarely appearing target face stimulus appeared among the standard face stimuli. The results indicated that the difference in P3 amplitudes for the target and standard faces depended on the combinations of facial expressions and facial colors; the P3 for red angry faces were greater than those for red neutral faces. Additionally, facial expression or facial color had no significant main effect or interaction effect on P1 amplitudes for the target, and facial expression had significant main effects only on the N170 amplitude. These findings suggest that the interaction between facial expression and color modulates the P3 associated with selective attention. Moreover, the response enhancement resulting from this interaction appears to occur at a cognitive processing stage that follows the processing stage associated with facial color or expression alone. Our results support the idea that red color increases the human response to anger from an EEG perspective.

{"title":"Interaction between Facial Expression and Color in Modulating ERP P3.","authors":"Yuya Hasegawa, Hideki Tamura, Shigeki Nakauchi, Tetsuto Minami","doi":"10.1523/ENEURO.0419-24.2024","DOIUrl":"10.1523/ENEURO.0419-24.2024","url":null,"abstract":"<p><p>The relationships between facial expression and color affect human cognition functions such as perception and memory. However, whether these relationships influence selective attention and brain activity contributed to selective attention remains unclear. For example, reddish angry faces increase emotion intensity, but it is unclear whether brain activity and selective attention are similarly enhanced. To investigate these questions, we examined whether event-related potentials for faces vary depending on facial expression and color by recording electroencephalography (EEG) data. We conducted an oddball task using stimuli that combined facial expressions (angry, neutral) and facial colors (original, red, green). The participants counted the number of times a rarely appearing target face stimulus appeared among the standard face stimuli. The results indicated that the difference in P3 amplitudes for the target and standard faces depended on the combinations of facial expressions and facial colors; the P3 for red angry faces were greater than those for red neutral faces. Additionally, facial expression or facial color had no significant main effect or interaction effect on P1 amplitudes for the target, and facial expression had significant main effects only on the N170 amplitude. These findings suggest that the interaction between facial expression and color modulates the P3 associated with selective attention. Moreover, the response enhancement resulting from this interaction appears to occur at a cognitive processing stage that follows the processing stage associated with facial color or expression alone. Our results support the idea that red color increases the human response to anger from an EEG perspective.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":"12 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142964255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PeerPub: A Device for Concurrent Operant Oral Self-Administration by Multiple Rats.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-09 Print Date: 2025-01-01 DOI: 10.1523/ENEURO.0241-24.2024
Paige M Lemen, Jie Ni, Jun Huang, Hao Chen

The social environment has long been recognized to play an important role in substance use, which is often modeled in rodents using operant conditioning. However, most operant chambers only accommodate one rodent at a time. We present PeerPub-a unique social operant chamber. PeerPub employs touch sensors to track the licking behavior on drinking spouts. When the number of licks meets a set reinforcement schedule, it dispenses a drop of solution with a fixed volume as a reward at the tip of the spout. A radio frequency identification (RFID) chip implanted in each rat's skull identifies it throughout the experiment. The system is managed by a Raspberry Pi computer. We evaluated PeerPub using Sprague Dawley rats in daily 1 h sessions, where supersac (a glucose and saccharin solution) was provided under a fixed-ratio five schedule. We discovered that male rats consumed more supersac in dual rat conditions compared with single rat conditions. These findings illustrate PeerPub's effectiveness in modeling the interaction between motivated behavior and social context. We expect devices like PeerPub will help highlight the role of social environments in substance use disorder phenotypes. All computer code, 3D design, and build instructions for PeerPub can be found at http://github.com/nijie321/PeerPub.

长期以来,人们一直认为社会环境在药物使用中扮演着重要角色,通常使用操作性条件反射在啮齿类动物中模拟这种情况。然而,大多数操作箱一次只能容纳一只啮齿动物。我们推出的 PeerPub 是一种独特的社会操作箱。PeerPub 采用触摸传感器来跟踪啮齿动物舔饮水嘴的行为。当舔食次数达到设定的强化时间表时,它就会在饮水口的顶端滴出一滴固定容量的溶液作为奖励。在整个实验过程中,每只大鼠头骨上植入的射频识别(RFID)芯片都会对其进行识别。该系统由一台 Raspberry Pi 电脑管理。我们使用 Sprague Dawley 大鼠对 PeerPub 进行了评估,每天进行一小时的实验,按照固定比例 5 计划提供 supersac(葡萄糖和糖精溶液)。我们发现,在双鼠条件下,雄性大鼠比单鼠条件下消耗了更多的 supersac。这些发现说明了同侪本在模拟动机行为与社会环境之间的相互作用方面的有效性。我们希望像 PeerPub 这样的设备将有助于突出社会环境在药物使用障碍表型中的作用。有关 PeerPub 的所有计算机代码、三维设计和制作说明,请访问 http://github.com/nijie321/PeerPub.Significance 声明 社会环境对食物和药物消费有显著影响,但传统的操作室只能容纳单只动物,从而限制了对这些影响的研究。PeerPub 是一种新型社交操作箱,它能让多只大鼠同时进行口服操作性药物自我给药,从而弥补了这一不足。利用 RFID 和触摸传感器,PeerPub 可追踪个体的舔食行为,并为每个个体提供适当的奖励。用 Sprague Dawley 大鼠进行的测试表明,社交互动会影响消耗行为,雄性大鼠在社交环境中消耗更多。PeerPub 为研究社会环境与动机行为之间的相互作用提供了一个强大的工具,为了解药物使用障碍的表型提供了宝贵的信息,并有助于制定有效的预防和治疗策略。
{"title":"PeerPub: A Device for Concurrent Operant Oral Self-Administration by Multiple Rats.","authors":"Paige M Lemen, Jie Ni, Jun Huang, Hao Chen","doi":"10.1523/ENEURO.0241-24.2024","DOIUrl":"10.1523/ENEURO.0241-24.2024","url":null,"abstract":"<p><p>The social environment has long been recognized to play an important role in substance use, which is often modeled in rodents using operant conditioning. However, most operant chambers only accommodate one rodent at a time. We present PeerPub-a unique social operant chamber. PeerPub employs touch sensors to track the licking behavior on drinking spouts. When the number of licks meets a set reinforcement schedule, it dispenses a drop of solution with a fixed volume as a reward at the tip of the spout. A radio frequency identification (RFID) chip implanted in each rat's skull identifies it throughout the experiment. The system is managed by a Raspberry Pi computer. We evaluated PeerPub using Sprague Dawley rats in daily 1 h sessions, where supersac (a glucose and saccharin solution) was provided under a fixed-ratio five schedule. We discovered that male rats consumed more supersac in dual rat conditions compared with single rat conditions. These findings illustrate PeerPub's effectiveness in modeling the interaction between motivated behavior and social context. We expect devices like PeerPub will help highlight the role of social environments in substance use disorder phenotypes. All computer code, 3D design, and build instructions for PeerPub can be found at http://github.com/nijie321/PeerPub.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering compromised speech-in-noise intelligibility in older listeners: the role of cochlear synaptopathy.
IF 2.7 3区 医学 Q3 NEUROSCIENCES Pub Date : 2025-01-09 DOI: 10.1523/ENEURO.0182-24.2024
Markus Garrett, Viacheslav Vasilkov, Manfred Mauermann, Pauline Devolder, John L Wilson, Leslie Gonzales, Kenneth S Henry, Sarah Verhulst

Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available. Furthermore, age-related hearing damage can comprise various aspects (e.g., hair cell damage, CS) that each can play a role in impaired sound perception. To explore the link between cochlear damage and speech intelligibility deficits, this study examines the role of CS for word recognition among older listeners. We first validated an envelope-following response (EFR) marker for CS using a Budgerigar model. We then applied this marker in human experiments, while restricting the speech material's frequency content to ensure that both the EFR and the behavioral tasks engaged similar cochlear frequency regions. Following this approach, we identified the relative contribution of hearing sensitivity and CS to speech intelligibility in two age-matched (65-year-old) groups with clinically normal (n=15, 8 females) or impaired audiograms (n=13, 8 females). Compared to a young normal-hearing control group (n = 13, 7 females), the older groups demonstrated lower EFR responses and impaired speech reception thresholds. We conclude that age-related CS reduces supra-threshold temporal envelope coding with subsequent speech coding deficits in noise that cannot be explained based on hearing sensitivity alone.Significance Statement Temporal bone histology reveals that cochlear synaptopathy (CS), characterized by damage to inner hair cell auditory nerve fiber synapses, precedes sensory cell damage and hearing sensitivity decline. Despite this, clinical practice primarily evaluates hearing status based on audiometric thresholds, potentially overlooking a prevalent aspect of sensorineural hearing damage due to aging, noise exposure, or ototoxic drugs-all of which can lead to CS. To address this gap, we employ a novel and sensitive EEG-based marker of CS to investigate its relationship with speech intelligibility. This study addresses a crucial unresolved issue in hearing science: whether CS significantly contributes to degraded speech intelligibility as individuals age. Our study-outcomes are pivotal for identifying the appropriate target for treatments aimed at improving impaired speech perception.

{"title":"Deciphering compromised speech-in-noise intelligibility in older listeners: the role of cochlear synaptopathy.","authors":"Markus Garrett, Viacheslav Vasilkov, Manfred Mauermann, Pauline Devolder, John L Wilson, Leslie Gonzales, Kenneth S Henry, Sarah Verhulst","doi":"10.1523/ENEURO.0182-24.2024","DOIUrl":"https://doi.org/10.1523/ENEURO.0182-24.2024","url":null,"abstract":"<p><p>Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available. Furthermore, age-related hearing damage can comprise various aspects (e.g., hair cell damage, CS) that each can play a role in impaired sound perception. To explore the link between cochlear damage and speech intelligibility deficits, this study examines the role of CS for word recognition among older listeners. We first validated an envelope-following response (EFR) marker for CS using a Budgerigar model. We then applied this marker in human experiments, while restricting the speech material's frequency content to ensure that both the EFR and the behavioral tasks engaged similar cochlear frequency regions. Following this approach, we identified the relative contribution of hearing sensitivity and CS to speech intelligibility in two age-matched (65-year-old) groups with clinically normal (n=15, 8 females) or impaired audiograms (n=13, 8 females). Compared to a young normal-hearing control group (n = 13, 7 females), the older groups demonstrated lower EFR responses and impaired speech reception thresholds. We conclude that age-related CS reduces supra-threshold temporal envelope coding with subsequent speech coding deficits in noise that cannot be explained based on hearing sensitivity alone.<b>Significance Statement</b> Temporal bone histology reveals that cochlear synaptopathy (CS), characterized by damage to inner hair cell auditory nerve fiber synapses, precedes sensory cell damage and hearing sensitivity decline. Despite this, clinical practice primarily evaluates hearing status based on audiometric thresholds, potentially overlooking a prevalent aspect of sensorineural hearing damage due to aging, noise exposure, or ototoxic drugs-all of which can lead to CS. To address this gap, we employ a novel and sensitive EEG-based marker of CS to investigate its relationship with speech intelligibility. This study addresses a crucial unresolved issue in hearing science: whether CS significantly contributes to degraded speech intelligibility as individuals age. Our study-outcomes are pivotal for identifying the appropriate target for treatments aimed at improving impaired speech perception.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142946585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
eNeuro
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1