Tahsinul Haque, Fatema Akhter, Nourelhoda Alim, Abdullah Nabhan, Fawzia Al Kahtani, Abdullah Mohammed Sambawa
{"title":"Identification and Characterization of Key Genes Associated with Amelogenesis.","authors":"Tahsinul Haque, Fatema Akhter, Nourelhoda Alim, Abdullah Nabhan, Fawzia Al Kahtani, Abdullah Mohammed Sambawa","doi":"10.1055/s-0044-1787958","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong> The identification of key genes associated with amelogenesis would be helpful in finding solutions to genetic disorders in oral biology. The study aimed to use <i>in silico</i> analysis to identify the key genes involved in tooth development associated with preameloblasts (PABs) and secretory ameloblasts (SABs).</p><p><strong>Material and methods: </strong> The data was subjected to quality analysis and uniform manifold approximation and projection analysis. To examine the distribution of the genes and identify important upregulated loci, a <i>p</i>-value histogram, a quantile plot, a mean difference and mean-variance plot, and a volcano plot were generated. Finally, protein-protein interaction and gene enrichment analyses were performed to determine the ontology, relevant biological processes, and molecular functions of selected genes.</p><p><strong>Results: </strong> A total of 157 genes were found to be significant in the PAB versus SAB comparison. HIST1H31 revealed strong interaction with HIST1H2BM, and EXO1, ASPM, SPC25, and TTK showed strong interactions with one other. The STRING database revealed that NCAPG, CENPU, NUSAP1, HIST1H2BM, and HIST1H31 are involved in biological processes. NCAPG, CENPU, SPC25, ETV5, TTK, ETV1, FAM9A, NUSAP1, HIST1H2BM, and HIST1H31 are involved in cellular components.</p><p><strong>Conclusion: </strong> The TTK, NUSAP1, CENPU, NCAPG, FAM9A, ASPM, SPC25, and HIST1H31 genes demonstrate functions in cell division. These genes might play a role in ameloblast development. These results will be useful in developing new methods to stimulate ameloblast development, which is essential for tooth regeneration and tissue engineering. However, more research is required to validate the functions of these genes and the genes with which they interact. A wide variety of genetic, epigenetic, and exogenous signaling factors regulate these genes and pathways throughout development and differentiation, cell fate, and behavior.</p>","PeriodicalId":12028,"journal":{"name":"European Journal of Dentistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0044-1787958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The identification of key genes associated with amelogenesis would be helpful in finding solutions to genetic disorders in oral biology. The study aimed to use in silico analysis to identify the key genes involved in tooth development associated with preameloblasts (PABs) and secretory ameloblasts (SABs).
Material and methods: The data was subjected to quality analysis and uniform manifold approximation and projection analysis. To examine the distribution of the genes and identify important upregulated loci, a p-value histogram, a quantile plot, a mean difference and mean-variance plot, and a volcano plot were generated. Finally, protein-protein interaction and gene enrichment analyses were performed to determine the ontology, relevant biological processes, and molecular functions of selected genes.
Results: A total of 157 genes were found to be significant in the PAB versus SAB comparison. HIST1H31 revealed strong interaction with HIST1H2BM, and EXO1, ASPM, SPC25, and TTK showed strong interactions with one other. The STRING database revealed that NCAPG, CENPU, NUSAP1, HIST1H2BM, and HIST1H31 are involved in biological processes. NCAPG, CENPU, SPC25, ETV5, TTK, ETV1, FAM9A, NUSAP1, HIST1H2BM, and HIST1H31 are involved in cellular components.
Conclusion: The TTK, NUSAP1, CENPU, NCAPG, FAM9A, ASPM, SPC25, and HIST1H31 genes demonstrate functions in cell division. These genes might play a role in ameloblast development. These results will be useful in developing new methods to stimulate ameloblast development, which is essential for tooth regeneration and tissue engineering. However, more research is required to validate the functions of these genes and the genes with which they interact. A wide variety of genetic, epigenetic, and exogenous signaling factors regulate these genes and pathways throughout development and differentiation, cell fate, and behavior.
期刊介绍:
The European Journal of Dentistry is the official journal of the Dental Investigations Society, based in Turkey. It is a double-blinded peer-reviewed, Open Access, multi-disciplinary international journal addressing various aspects of dentistry. The journal''s board consists of eminent investigators in dentistry from across the globe and presents an ideal international composition. The journal encourages its authors to submit original investigations, reviews, and reports addressing various divisions of dentistry including oral pathology, prosthodontics, endodontics, orthodontics etc. It is available both online and in print.