Identification of WRKY transcription factors in Rosa chinensis and analysis of their expression response to alkali stress response.

IF 2.6 4区 生物学 Q2 PLANT SCIENCES Functional Plant Biology Pub Date : 2024-09-01 DOI:10.1071/FP23077
Changbing Huang, Wenhui Cheng, Yu Feng, Tongyu Zhang, Taotao Yan, Zhengzhi Jiang, Peilei Cheng
{"title":"Identification of <i>WRKY</i> transcription factors in <i>Rosa chinensis</i> and analysis of their expression response to alkali stress response.","authors":"Changbing Huang, Wenhui Cheng, Yu Feng, Tongyu Zhang, Taotao Yan, Zhengzhi Jiang, Peilei Cheng","doi":"10.1071/FP23077","DOIUrl":null,"url":null,"abstract":"<p><p>Breeding abiotic stress-tolerant varieties of Rosa chinensis is a paramount goal in horticulture. WRKY transcription factors, pivotal in plant responses to diverse stressors, offer potential targets for enhancing stress resilience in R. chinensis . Using bioinformatics and genomic data, we identified RcWRKY transcription factor genes, characterised their chromosomal distribution, phylogenetic relationships, structural attributes, collinearity, and expression patterns in response to saline stress. Leveraging bidirectional database searches, we pinpointed 66 RcWRKY genes, categorised into three groups. All except RcWRKY60 encoded DNA Binding Domain and Zinc Finger Motif regions of the WRKY domain. Expansion of the RcWRKY gene family was propelled by 19 segmental, and 2 tandem, duplications. We unveiled 41 and 15 RcWRKY genes corresponding to 50 AtWRKY and 17 OsWRKY orthologs respectively, indicating postdivergence expansion. Expression analyses under alkaline stress pinpointed significant alterations in 54 RcWRKY genes. Integration of functional roles from their Arabidopsis orthologs and cis -acting elements within their promoters, along with quantitative reverse transcription PCR validation, underscored the importance of RcWRKY27 and 29 in R. chinensis ' alkaline stress response. These findings offer insights into the biological roles of RcWRKY transcription factors, as well as the regulatory dynamics governing R. chinensis ' growth, development, and stress resilience.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23077","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Breeding abiotic stress-tolerant varieties of Rosa chinensis is a paramount goal in horticulture. WRKY transcription factors, pivotal in plant responses to diverse stressors, offer potential targets for enhancing stress resilience in R. chinensis . Using bioinformatics and genomic data, we identified RcWRKY transcription factor genes, characterised their chromosomal distribution, phylogenetic relationships, structural attributes, collinearity, and expression patterns in response to saline stress. Leveraging bidirectional database searches, we pinpointed 66 RcWRKY genes, categorised into three groups. All except RcWRKY60 encoded DNA Binding Domain and Zinc Finger Motif regions of the WRKY domain. Expansion of the RcWRKY gene family was propelled by 19 segmental, and 2 tandem, duplications. We unveiled 41 and 15 RcWRKY genes corresponding to 50 AtWRKY and 17 OsWRKY orthologs respectively, indicating postdivergence expansion. Expression analyses under alkaline stress pinpointed significant alterations in 54 RcWRKY genes. Integration of functional roles from their Arabidopsis orthologs and cis -acting elements within their promoters, along with quantitative reverse transcription PCR validation, underscored the importance of RcWRKY27 and 29 in R. chinensis ' alkaline stress response. These findings offer insights into the biological roles of RcWRKY transcription factors, as well as the regulatory dynamics governing R. chinensis ' growth, development, and stress resilience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鉴定栝楼中的 WRKY 转录因子并分析其对碱胁迫反应的表达响应。
培育耐受非生物胁迫的蔷薇(Rosa chinensis)品种是园艺业的首要目标。WRKY 转录因子在植物对各种胁迫的反应中起着关键作用,是提高栝楼抗逆性的潜在靶标。利用生物信息学和基因组数据,我们确定了 RcWRKY 转录因子基因,分析了它们的染色体分布、系统发育关系、结构属性、共线性以及在盐碱胁迫下的表达模式。通过双向数据库搜索,我们确定了 66 个 RcWRKY 基因,并将其分为三组。除 RcWRKY60 外,其他所有基因都编码 WRKY 结构域的 DNA 结合域和锌指 Motif 区域。RcWRKY基因家族的扩展是由19个节段重复和2个串联重复推动的。我们分别发现了与 50 个 AtWRKY 和 17 个 OsWRKY 同源物相对应的 41 个和 15 个 RcWRKY 基因,这表明了分化后的扩展。碱性胁迫下的表达分析指出 54 个 RcWRKY 基因发生了显著变化。结合拟南芥直向同源物的功能作用和启动子中的顺式作用元件,以及定量反转录 PCR 验证,强调了 RcWRKY27 和 29 在盐碱胁迫响应中的重要性。这些发现有助于深入了解 RcWRKY 转录因子的生物学作用,以及管理盐肤木生长、发育和抗逆性的调控动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
期刊最新文献
Glycoside hydrolases reveals their differential role in response to drought and salt stress in potato (Solanum tuberosum) Coordination between water relations strategy and carbon investment in leaf and stem in six fruit tree species. Genome editing for improvement of biotic and abiotic stress tolerance in cereals. Investigating the combined effects of β-sitosterol and biochar on nutritional value and drought tolerance in Phaseolus vulgaris under drought stress. Augmenting the basis of lodging tolerance in wheat (Triticum aestivum) under natural and simulated conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1