Kyeongho Eom, Han-Sol Lee, Minju Park, Seung Min Yang, Jong Chan Choe, Suk-Won Hwang, Young-Woo Suh, Hyung-Min Lee
{"title":"Development of Ocular Muscle Stimulation Systems and Optimization of Electrical Stimulus Parameters for Paralytic Strabismus Treatment.","authors":"Kyeongho Eom, Han-Sol Lee, Minju Park, Seung Min Yang, Jong Chan Choe, Suk-Won Hwang, Young-Woo Suh, Hyung-Min Lee","doi":"10.1109/TBME.2024.3460814","DOIUrl":null,"url":null,"abstract":"<p><p>Paralysis of the extraocular muscles can lead to complications such as strabismus, diplopia, and loss of stereopsis. Current surgical treatments aim to mitigate these issues by resecting the paralyzed muscle or transposing the other recti muscles to the paralyzed muscle, but they do not fully improve the patient's quality of life. Electrical stimulation shows promise, while requiring further in vivo experiments and research on various stimulation parameters. In this study, we conducted experiments on rabbits to stimulate the superior rectus (SR) muscles using different parameters and stimulation waveforms. To provide various types of electrical stimulation, we developed the ocular muscle stimulation systems capable of both current controlled stimulation (CCS) and high-frequency stimulation (HFS), along with the chip that enables energy-efficient and safe switched-capacitor stimulation (SCS). We also developed electrodes for easy implantation and employed safe and efficient stimulation methods including CCS, SCS, and HFS. The in vivo animal experiments on normal and paralyzed SR muscles of rabbits showed that eyeball abduction angles were proportional to the current and pulse width of the stimulation. With the decaying exponential stimuli of the SCS system, eyeball abductions were 2.58× and 5.65× larger for normal and paralyzed muscles, respectively, compared to the rectangular stimulus of CCS. HFS achieved 0.92× and 0.26× abduction for normal and paralyzed muscles, respectively, with half energy compared to CCS. In addition, the continuous changes in eyeball abduction angle in response to varying stimulation intensity over time were observed.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3460814","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Paralysis of the extraocular muscles can lead to complications such as strabismus, diplopia, and loss of stereopsis. Current surgical treatments aim to mitigate these issues by resecting the paralyzed muscle or transposing the other recti muscles to the paralyzed muscle, but they do not fully improve the patient's quality of life. Electrical stimulation shows promise, while requiring further in vivo experiments and research on various stimulation parameters. In this study, we conducted experiments on rabbits to stimulate the superior rectus (SR) muscles using different parameters and stimulation waveforms. To provide various types of electrical stimulation, we developed the ocular muscle stimulation systems capable of both current controlled stimulation (CCS) and high-frequency stimulation (HFS), along with the chip that enables energy-efficient and safe switched-capacitor stimulation (SCS). We also developed electrodes for easy implantation and employed safe and efficient stimulation methods including CCS, SCS, and HFS. The in vivo animal experiments on normal and paralyzed SR muscles of rabbits showed that eyeball abduction angles were proportional to the current and pulse width of the stimulation. With the decaying exponential stimuli of the SCS system, eyeball abductions were 2.58× and 5.65× larger for normal and paralyzed muscles, respectively, compared to the rectangular stimulus of CCS. HFS achieved 0.92× and 0.26× abduction for normal and paralyzed muscles, respectively, with half energy compared to CCS. In addition, the continuous changes in eyeball abduction angle in response to varying stimulation intensity over time were observed.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.