{"title":"Ultrasonic Rough Crack Characterization Using Time-of-Flight Diffraction With Self-Attention Neural Network","authors":"Zhengjun Wang;Fan Shi;Junhao Ding;Xu Song","doi":"10.1109/TUFFC.2024.3459619","DOIUrl":null,"url":null,"abstract":"Time-of-flight diffraction (ToFD) is a widely used ultrasonic nondestructive evaluation (NDE) method for locating and characterizing rough defects, with high accuracy in sizing smooth cracks. However, naturally grown defects often have irregular surfaces, complicating the received tip diffraction waves and affecting the accuracy of defect characterization. This article proposes a self-attention (SA) deep learning method to interpret the ToFD A-scan signals for sizing rough defects. A high-fidelity finite-element (FE) simulation software Pogo is used to generate the synthetic datasets for training and testing the deep learning model. Besides, the transfer learning (TL) method is used to fine-tune the deep learning model trained by the Gaussian rough defects to boost the performance of characterizing realistic thermal fatigue rough defects. An ultrasonic experiment using 2-D rough crack samples made by additive manufacturing is conducted to validate the performance of the developed deep learning model. To demonstrate the accuracy of the proposed method, the crack characterization results are compared with those obtained using the conventional Hilbert peak-to-peak sizing method. The results indicate that the deep learning method achieves significantly reduced uncertainty and error in rough defect characterization, in comparison with traditional sizing approaches used in ToFD measurements.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 10","pages":"1289-1301"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679235/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Time-of-flight diffraction (ToFD) is a widely used ultrasonic nondestructive evaluation (NDE) method for locating and characterizing rough defects, with high accuracy in sizing smooth cracks. However, naturally grown defects often have irregular surfaces, complicating the received tip diffraction waves and affecting the accuracy of defect characterization. This article proposes a self-attention (SA) deep learning method to interpret the ToFD A-scan signals for sizing rough defects. A high-fidelity finite-element (FE) simulation software Pogo is used to generate the synthetic datasets for training and testing the deep learning model. Besides, the transfer learning (TL) method is used to fine-tune the deep learning model trained by the Gaussian rough defects to boost the performance of characterizing realistic thermal fatigue rough defects. An ultrasonic experiment using 2-D rough crack samples made by additive manufacturing is conducted to validate the performance of the developed deep learning model. To demonstrate the accuracy of the proposed method, the crack characterization results are compared with those obtained using the conventional Hilbert peak-to-peak sizing method. The results indicate that the deep learning method achieves significantly reduced uncertainty and error in rough defect characterization, in comparison with traditional sizing approaches used in ToFD measurements.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.