{"title":"Phenotypic and genotypic characterization of methicillin resistant <i>Staphylococcus aureus</i> associated with pyogenic infections.","authors":"Sharanya Krishnakumar, Abdul Azeez Mohamed Khalid, Jothipandian Sowndarya, Lakshmi Krishnasamy, Paramasivam Nithyanand","doi":"10.18502/ijm.v16i4.16302","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Staphylococcal infections are one of the major infectious diseases affecting globally in spite of advances in development of antimicrobial agents. Knowledge and awareness about the local pattern and prevalence of MRSA infections plays a key role in treatment. The aim of this study was to identify MRSA strains by phenotypic and genotypic methods and to analyze the antibiotic susceptibility pattern of MRSA strains from patients attending a tertiary care hospital.</p><p><strong>Materials and methods: </strong>This study was conducted over a period of 1 year, where 296 isolates of <i>Staphylococcus aureus</i> were isolated from various clinical specimens. The isolated strains were examined for antibiotic susceptibility by the modified Kirby Bauer disc diffusion method. Methicillin resistance was detected by cefoxitin disk diffusion test.</p><p><strong>Results: </strong>A total of 104 isolates were found to be MRSA and 192 were found to be MSSA. Among the 104 MRSA isolates, 10 strains that were multidrug resistant were subjected to 16S rRNA gene sequencing analysis. All the 10 strains had a 99% match with <i>S. aureus</i> strains that were responsible for causing some serious biofilm mediated clinical manifestations like cystic fibrosis and device mediated infections. The biofilms were quantified using crystal violet staining and their ability to produce biofilms was analyzed using scanning electron microscopy and matched with the Genbank.</p><p><strong>Conclusion: </strong>Hence these phylogenetic analysis aid in treating the patients and combating resistance to antibiotics.</p>","PeriodicalId":14633,"journal":{"name":"Iranian Journal of Microbiology","volume":"16 4","pages":"443-449"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijm.v16i4.16302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: Staphylococcal infections are one of the major infectious diseases affecting globally in spite of advances in development of antimicrobial agents. Knowledge and awareness about the local pattern and prevalence of MRSA infections plays a key role in treatment. The aim of this study was to identify MRSA strains by phenotypic and genotypic methods and to analyze the antibiotic susceptibility pattern of MRSA strains from patients attending a tertiary care hospital.
Materials and methods: This study was conducted over a period of 1 year, where 296 isolates of Staphylococcus aureus were isolated from various clinical specimens. The isolated strains were examined for antibiotic susceptibility by the modified Kirby Bauer disc diffusion method. Methicillin resistance was detected by cefoxitin disk diffusion test.
Results: A total of 104 isolates were found to be MRSA and 192 were found to be MSSA. Among the 104 MRSA isolates, 10 strains that were multidrug resistant were subjected to 16S rRNA gene sequencing analysis. All the 10 strains had a 99% match with S. aureus strains that were responsible for causing some serious biofilm mediated clinical manifestations like cystic fibrosis and device mediated infections. The biofilms were quantified using crystal violet staining and their ability to produce biofilms was analyzed using scanning electron microscopy and matched with the Genbank.
Conclusion: Hence these phylogenetic analysis aid in treating the patients and combating resistance to antibiotics.
期刊介绍:
The Iranian Journal of Microbiology (IJM) is an international, multi-disciplinary, peer-reviewed journal that provides rapid publication of the most advanced scientific research in the areas of basic and applied research on bacteria and other micro-organisms, including bacteria, viruses, yeasts, fungi, microalgae, and protozoa concerning the development of tools for diagnosis and disease control, epidemiology, antimicrobial agents, clinical microbiology, immunology, Genetics, Genomics and Molecular Biology. Contributions may be in the form of original research papers, review articles, short communications, case reports, technical reports, and letters to the Editor. Research findings must be novel and the original data must be available for review by the Editors, if necessary. Studies that are preliminary, of weak originality or merely descriptive as well as negative results are not appropriate for the journal. Papers considered for publication must be unpublished work (except in an abstract form) that is not under consideration for publication anywhere else, and all co-authors should have agreed to the submission. Manuscripts should be written in English.